#include #include #include #include #include #include #include #include #include #include #include #define OFFSET 16 #define N_DILATIONS 3 struct Result { void* data; bool_t success; }; struct MaskData { uint16_t label; size_t area; size_t perimeter; }; struct MaskData* create_mask_data(uint16_t label) { struct MaskData *data = (struct MaskData*)malloc(sizeof(struct MaskData)); data->label = label; data->area = 0; data->perimeter = 0; return data; } struct AVLNode { void* data; bool_t (*compare)(void*, void*); struct AVLNode* left; struct AVLNode* right; uint8_t height; }; uint8_t get_height(struct AVLNode* node) { if (node == NULL) { return 0; } return node->height; } bool_t compare_labels(struct MaskData* left, struct MaskData* right) { return left->label < right->label; } struct AVLNode* create_avl_mask_node(struct MaskData* data) { struct AVLNode* node = (struct AVLNode*)malloc(sizeof(struct AVLNode)); if (node == NULL) { return NULL; } node->data = data; node->compare = (bool_t (*)(void*,void*))&compare_labels; node->left = NULL; node->right = NULL; node->height = 1; // Leaf initially return node; } uint8_t max_height(uint8_t a, uint8_t b) { return (a > b) ? a : b; } ssize_t get_balance_factor(struct AVLNode* node) { if (node == NULL) { return 0; } return get_height(node->left) - get_height(node->right); } struct AVLNode* right_rotate(struct AVLNode* parent) { struct AVLNode* child1 = parent->left; struct AVLNode* child2 = child1->right; child1->right = parent; parent->left = child2; parent->height = max_height(get_height(parent->left), get_height(parent->right)) + 1; child1->height = max_height(get_height(child1->left), get_height(child1->right)) + 1; return child1; } struct AVLNode* left_rotate(struct AVLNode* parent) { struct AVLNode* child1 = parent->right; struct AVLNode* child2 = child1->left; child1->left = parent; parent->right = child2; parent->height = max_height(get_height(parent->left), get_height(parent->right)) + 1; child1->height = max_height(get_height(child1->left), get_height(child1->right)) + 1; return child1; } struct Result insert_mask(struct AVLNode* node, struct MaskData* data) { struct Result result; // 1. Standard BST insertion if (node == NULL) { return (struct Result) {create_avl_mask_node(data), TRUE}; } struct MaskData *node_data = (struct MaskData*)node->data; if (node->compare(data, node_data)) { result = insert_mask(node->left, data); if (!result.success) { fprintf(stderr, "Failed to insert!"); return result; } node->left = (struct AVLNode*)result.data; } else if (node->compare(node->data, data)) { result = insert_mask(node->right, data); if (!result.success) { fprintf(stderr, "Failed to insert!"); return result; } node->right = (struct AVLNode*)result.data; } else { return (struct Result) {node, FALSE}; } // 2. Update height of the ancestor node node->height = 1 + max_height(get_height(node->left), get_height(node->right)); ssize_t balance = get_balance_factor(node); // 4. If the node becomes unbalanced // LeftLeft if ((balance > 1) && node->compare(data, node->left->data)) { return (struct Result) {right_rotate(node), TRUE}; } // RightRight if ((balance < -1) && node->compare(node->right->data, data)) { return (struct Result) {left_rotate(node), TRUE}; } // LeftRight if ((balance > 1) && node->compare(node->left->data, data)) { return (struct Result) {right_rotate(node), TRUE}; } // RightLeft if ((balance < -1) && node->compare(data,node->right->data)) { return (struct Result) {left_rotate(node), TRUE}; } return (struct Result) {node, TRUE}; } struct AVLNode* insert_mask_alloc(struct AVLNode* node, uint16_t label) { struct MaskData* data = create_mask_data(label); struct Result result = insert_mask(node, data); if (!result.success) { free(data); } return (struct AVLNode*)result.data; } void print_label(struct AVLNode* root) { if (root != NULL) { print_label(root->left); struct MaskData* data = root->data; printf("%d: (%zu, %zu) ", data->label, data->area, data->perimeter); print_label(root->right); } } void free_avl_tree(struct AVLNode* root) { if (root != NULL) { free_avl_tree(root->left); free_avl_tree(root->right); free(root); } } void free_avl_tree_nodes(struct AVLNode* root) { if (root != NULL) { free_avl_tree_nodes(root->left); free_avl_tree_nodes(root->right); if (root->data != NULL) { free(root->data); } free(root); } } bool_t increase_label_area(struct AVLNode* root, uint16_t label) { if (root == NULL) { return FALSE; } struct MaskData* data = (struct MaskData*)root->data; if (data->label == label) { data->area++; } else if (data->label > label) { increase_label_area(root->left, label); } else if (data->label < label) { increase_label_area(root->right, label); } return TRUE; } bool_t increase_label_perimeter(struct AVLNode* root, uint16_t label) { if (root == NULL) { return FALSE; } struct MaskData* data = (struct MaskData*)root->data; if (data->label == label) { data->perimeter++; } else if (data->label > label) { increase_label_perimeter(root->left, label); } else if (data->label < label) { increase_label_perimeter(root->right, label); } return TRUE; } int main(int argc, char** argv) { struct AVLNode* root = NULL; root = insert_mask_alloc(root, 2); root = insert_mask_alloc(root, 5); root = insert_mask_alloc(root, 1); root = insert_mask_alloc(root, 3); root = insert_mask_alloc(root, 4); printf("Inorder traversal of AVL tree: "); print_label(root); printf("\n"); free_avl_tree_nodes(root); //----------------------------------------------- //-LIST-FILES-IN-DIRECTORY----------------------- //----------------------------------------------- char** file_list = NULL; uint32_t width, height; uint16_t starting_label = 1; uint16_t *masks = NULL; if (argc > 1) { if (is_directory(argv[1])) { file_list = list_directory(argv[1]); if (file_list) { size_t index = 0; while (1) { char* fname = file_list[index]; if (fname == NULL) { break; } if (is_tif_ext(fname) == FALSE) { free(file_list[index++]); continue; } char* fpath = full_path(argv[1], fname); printf("Loading %s...\n", fpath); uint16_t *file_labels = tif_to_labels(fpath, &width, &height, &starting_label); masks = combine_masks(masks, file_labels, width, height); free(file_labels); free(fpath); free(file_list[index++]); } free(file_list); } } } if (masks == NULL) { fprintf(stderr, "No masks found!\n"); return 1; } printf("%u labels found\n", starting_label-1); printf("Mask dimensions: %u %u\n", width, height); TIME(ts_start); for (uint16_t count = 0; count < N_DILATIONS; count++) { uint16_t *new_labels = dilate(masks, width, height); free(masks); masks = new_labels; } TIME(ts_end); printf("Dilation took %f ms\n", 1000*diff_time(&ts_end, &ts_start)); //free(masks); //----------------------------------------------- //----------------------------------------------- //-RAYLIB-INIT //----------------------------------------------- SetTraceLogLevel(LOG_ERROR); SetConfigFlags(FLAG_WINDOW_RESIZABLE); const char* gui_title = "Image Manip - Useful for segmentations!"; InitWindow(SCREEN_WIDTH, SCREEN_HEIGHT, gui_title); //----------------------------------------------- // (When treating this as RGBA, last bits should ensure opaque) // This assumes 4096 (2^12) > labels for (size_t y = 0; y < height; y++) { for (size_t x = 0; x < width; x++) { /// RGBA channels: Move labels to RGB masks[x + y*width] <<= 4; masks[x + y*width] |= 0x000F; } } //----------------------------------------------- //----------------------------------------------- //-RAYLIB-IMAGE-STRUCTURING---------------------- //----------------------------------------------- Image RaylibImage; RaylibImage.width = width; RaylibImage.height = height; RaylibImage.mipmaps = 1; // Use Contiguous Labels RaylibImage.data = masks; RaylibImage.format = PIXELFORMAT_UNCOMPRESSED_R4G4B4A4; //----------------------------------------------- // Image to a Texture Texture2D RaylibTexture = LoadTextureFromImage(RaylibImage); // Scale the image to the viewport /// Source Rectangle: Original Size Rectangle sourceRec = { 0.0f, 0.0f, (float)width, (float)height }; /// Destination Rectangle: Transformed Size Rectangle destRec = { 0.0f, 0.0f, (float)SCREEN_WIDTH, (float)(SCREEN_HEIGHT-OFFSET) }; /// Location to begin drawing Vector2 origin = { (float)0, (float)-OFFSET }; // Raylib boilerplate SetTargetFPS(60); Camera2D camera = { 0 }; camera.zoom = 1.0f; // GUI Loop while (!WindowShouldClose()) { //----------------------------------------------- //-DRAWING--------------------------------------- //----------------------------------------------- BeginDrawing(); ClearBackground(RAYWHITE); BeginMode2D(camera); EndMode2D(); DrawText("Image Manip", 0, 0, OFFSET, DARKGRAY); DrawTexturePro(RaylibTexture, sourceRec, destRec, origin, (float)0, RAYWHITE); /* uint32_t x = 0x49, y = 0x4A; uint32_t dx = 0x69 - x, dy = 0x6E - y; x = (SCREEN_WIDTH*x)/width; y = SCREEN_HEIGHT-((SCREEN_HEIGHT-OFFSET)*y)/height; dx = (SCREEN_WIDTH*dx)/width; dy = SCREEN_HEIGHT-((SCREEN_HEIGHT-OFFSET)*dy)/height; DrawRectangleGradientH(x, y, dx, dy, BLUE, PURPLE); */ EndDrawing(); //----------------------------------------------- } if (masks != NULL) { for (size_t y = 0; y < height; y++) { for (size_t x = 0; x < width; x++) { /// Restore labels from RGBA masks[x + y*width] &= 0xFFF0; masks[x + y*width] >>= 4; } } write_array("../out.bin", masks, width*height*sizeof(uint16_t)); free(masks); } CloseWindow(); return 0; }