#include #include #include #include #include #include #include #include #include #include #include #include void testfxn(void); void handle_data(unsigned char); void c_irq_handler(void) { unsigned long source = load32(CORE0_IRQ_SOURCE); if (source & (1 << 8)) { if(load32(IRQ_PENDING2) & (1 << 25)) { if(load32(UART0_MIS) & (1<<4)) { unsigned long data = load32(UART0_DR); { unsigned int x = g_Drawer.x; unsigned int y = g_Drawer.y; g_Drawer.x = 0; g_Drawer.y = 14; write_hex32(&g_Drawer, data); g_Drawer.x = x; g_Drawer.y = y; } // Ctrl+T to toggle timer if(data == 0x14) { unsigned long timer_status; asm volatile("mrc p15, 0, %0, c14, c3, 1" : "=r"(timer_status)); unsigned int x = g_Drawer.x; unsigned int y = g_Drawer.y; g_Drawer.x = 0; g_Drawer.y = 5; write_string(&g_Drawer, "TIMER: "); if(timer_status == 0) { cntfrq = read_cntfrq(); write_cntv_tval(cntfrq/CPS); enablecntv(); write_cstring(&g_Drawer, "Enabled ", 0x00FF00); } else { disablecntv(); write_cstring(&g_Drawer, "Disabled", 0xFF0000); } g_Drawer.x = x; g_Drawer.y = y; // Ctrl+R to reset } else if(data == 0x12) { _start(); } else { add_thread(handle_data, (void*)data, 1); } return; } } else if (*(unsigned long*)SYS_TIMER_CS == SYS_TIMER_SC_M0) { volatile unsigned long* timer_cs = (unsigned long*)SYS_TIMER_CS; volatile unsigned long* timer_chi = (unsigned long*)SYS_TIMER_CHI; volatile unsigned long* nexttime = (unsigned long*)SYS_TIMER_C0; *timer_cs = SYS_TIMER_SC_M0; *nexttime = *timer_chi + 60000000; } } else if (source & (1 << 3)) { c_timer(); return; } return; } static unsigned long counter = 0; unsigned long c_fiq_handler(void) { unsigned long source = load32(CORE0_FIQ_SOURCE); if (source & (1 << 3)) { c_timer(); counter++; if (counter % 0x6000 == 0) { counter = 0; } if (counter % 0x30 == 0) { return 1; } return 0; } return 0; } void handle_data(unsigned char data) { unsigned long off = cmdidx; if (off < 2048) { // Newline Case if (data == 0x0D) { for(int i = off; i>=0;i--) cmd[i] = 0x0; off = 0; // Backspace Case } else if (data == 0x08 || data == 0x7F) { if (off > 0) { off -= 1; } cmd[off] = 0x0; // Lock Case } else if (data == 0x6C) { cmd[off] = (char) data; off += 1; lock_mutex(&exe_cnt_m, SYS_PID); // Release Case } else if (data == 0x72) { cmd[off] = (char) data; off += 1; release_mutex(&exe_cnt_m, SYS_PID); } else if (data == 0x61) { cmd[off] = (char) data; off += 1; add_thread(testfxn, 0, 3); } else if (data == 0x62) { cmd[off] = (char) data; off += 1; add_thread(uart_scheduler, 0, 2); // Else output } else { cmd[off] = (char) data; off += 1; } } else if (off == 2048) { if (data == 0x0D) { for(int i = off; i>=0;i--) cmd[i] = 0x0; off = 0; } else if (data == 0x08 || data == 0x7F) { if (off > 0) { off -= 1; } cmd[off] = 0x0; } } cmdidx = off; g_Drawer.x = 0; g_Drawer.y = 7; for(int i = 0; i < 128; i++) write_char(&g_Drawer, ' '); g_Drawer.x = 0; g_Drawer.y = 7; write_string(&g_Drawer, "> "); write_string(&g_Drawer, cmd); } void testfxn2(void) { uart_string("Ran testfxn2\n"); } void testfxn(void) { unsigned int i = 0x69420; void* a = malloc(5); void* b = malloc(3); void* c = malloc(4); void* d = malloc(4); uart_string("Start\n"); add_thread(testfxn2, 0, 0); delay(0x20000000); uart_string("Freeing B\n"); free(b); uart_string("Freeing A\n"); free(a); uart_string("Freeing C\n"); free(c); delay(0x20000000); uart_string("Freeing D\n"); free(d); delay(0x20000000); uart_hexn(i); uart_string("End\n"); }