1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
#include <cpu.h>
#include <cpu/irq.h>
#include <drivers/uart.h>
#include <globals.h>
#include <graphics/drawer.h>
#include <symbols.h>
#include <sys/core.h>
#include <sys/schedule.h>
#include <sys/timer.h>
#include <util/mutex.h>
#include <util/status.h>
#include <util/time.h>
void testfxn(void);
void handle_data(unsigned char);
void c_irq_handler(void)
{
unsigned long source = load32(CORE0_IRQ_SOURCE);
if (source & (1 << 8)) {
if(load32(IRQ_PENDING2) & (1 << 25)) {
if(load32(UART0_MIS) & (1<<4)) {
unsigned long data = load32(UART0_DR);
{
unsigned int x = g_Drawer.x;
unsigned int y = g_Drawer.y;
g_Drawer.x = 0;
g_Drawer.y = 14;
write_hex32(&g_Drawer, data);
g_Drawer.x = x;
g_Drawer.y = y;
}
// Ctrl+T to toggle timer
if(data == 0x14) {
unsigned long timer_status;
asm volatile("mrc p15, 0, %0, c14, c3, 1" : "=r"(timer_status));
unsigned int x = g_Drawer.x;
unsigned int y = g_Drawer.y;
g_Drawer.x = 0;
g_Drawer.y = 5;
write_string(&g_Drawer, "TIMER: ");
if(timer_status == 0) {
cntfrq = read_cntfrq();
write_cntv_tval(cntfrq/CPS);
enablecntv();
write_cstring(&g_Drawer, "Enabled ", 0x00FF00);
} else {
disablecntv();
write_cstring(&g_Drawer, "Disabled", 0xFF0000);
}
g_Drawer.x = x;
g_Drawer.y = y;
// Ctrl+R to reset
} else if(data == 0x12) {
_start();
} else {
add_thread(handle_data, (void*)data, 1);
}
return;
}
} else if (*(unsigned long*)SYS_TIMER_CS == SYS_TIMER_SC_M0) {
volatile unsigned long* timer_cs = (unsigned long*)SYS_TIMER_CS;
volatile unsigned long* timer_chi = (unsigned long*)SYS_TIMER_CHI;
volatile unsigned long* nexttime = (unsigned long*)SYS_TIMER_C0;
*timer_cs = SYS_TIMER_SC_M0;
*nexttime = *timer_chi + 60000000;
}
} else if (source & (1 << 3)) {
c_timer();
return;
}
return;
}
static unsigned long counter = 0;
unsigned long c_fiq_handler(void)
{
unsigned long source = load32(CORE0_FIQ_SOURCE);
if (source & (1 << 3)) {
c_timer();
counter++;
if (counter % 0x6000 == 0) {
counter = 0;
}
if (counter % 0x30 == 0) {
return 1;
}
return 0;
}
return 0;
}
void handle_data(unsigned char data)
{
// Newline Case
if (data == 0x0D) {
// Backspace Case
} else if (data == 0x08 || data == 0x7F) {
// Lock Case
} else if (data == 0x6C) {
lock_mutex(&exe_cnt_m, SYS_PID);
// Release Case
} else if (data == 0x72) {
release_mutex(&exe_cnt_m, SYS_PID);
} else if (data == 0x61) {
add_thread(testfxn, 0, 3);
} else if (data == 0x62) {
add_thread(uart_scheduler, 0, 2);
} else if (data == 0x63) {
add_thread(heap_info, 0, 2);
} else {
}
g_Drawer.x = 0;
g_Drawer.y = 7;
for(int i = 0; i < 128; i++)
write_char(&g_Drawer, ' ');
g_Drawer.x = 0;
g_Drawer.y = 7;
write_string(&g_Drawer, "> ");
}
void testfxn2(void)
{
uart_string("Ran testfxn2\n");
}
void testfxn(void)
{
unsigned int i = 0x69420;
void* a = malloc(5);
void* b = malloc(3);
void* c = malloc(4);
void* d = malloc(4);
uart_string("Start\n");
add_thread(testfxn2, 0, 0);
delay(0x20000000);
uart_string("Freeing B\n");
free(b);
uart_string("Freeing A\n");
free(a);
uart_string("Freeing C\n");
free(c);
delay(0x20000000);
uart_string("Freeing D\n");
free(d);
delay(0x20000000);
uart_hexn(i);
uart_string("End\n");
}
|