From b85ee9d64a536937912544c7bbd5b98b635b7e8d Mon Sep 17 00:00:00 2001 From: Christian C Date: Mon, 11 Nov 2024 12:29:32 -0800 Subject: Initial commit --- old_notebooks/TensorflowToPyTorch.ipynb | 120 ++++++++++++++++++++++++++++++++ 1 file changed, 120 insertions(+) create mode 100644 old_notebooks/TensorflowToPyTorch.ipynb (limited to 'old_notebooks/TensorflowToPyTorch.ipynb') diff --git a/old_notebooks/TensorflowToPyTorch.ipynb b/old_notebooks/TensorflowToPyTorch.ipynb new file mode 100644 index 0000000..76d588c --- /dev/null +++ b/old_notebooks/TensorflowToPyTorch.ipynb @@ -0,0 +1,120 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "0dfb6ada-ed98-48c9-8610-cadb7493e138", + "metadata": {}, + "outputs": [], + "source": [ + "from sunlab.environment.base.cpu import *\n", + "from sunlab.environment.base.extras import *\n", + "from sunlab.globals import FILES\n", + "from sunlab.sunflow import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "4136a260-bb40-47ec-8aad-d2a6ac31f1f2", + "metadata": {}, + "outputs": [], + "source": [ + "model, dataset = load_aae_and_dataset(FILES['TRAINING_DATASET'], FILES['PRETRAINED_MODEL_DIR'], MaxAbsScaler)" + ] + }, + { + "cell_type": "markdown", + "id": "00694ce2", + "metadata": {}, + "source": [ + "# Save for PyTorch!" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "23ae3a97", + "metadata": {}, + "outputs": [ + { + "ename": "ValueError", + "evalue": "Already Saved the model Weights!", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[22], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAlready Saved the model Weights!\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 2\u001b[0m names_tup \u001b[38;5;241m=\u001b[39m [(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLAYER_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mi\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m_WEIGHTS\u001b[39m\u001b[38;5;124m\"\u001b[39m,\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLAYER_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mi\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m_BIAS\u001b[39m\u001b[38;5;124m\"\u001b[39m,) \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m1\u001b[39m,\u001b[38;5;241m3\u001b[39m\u001b[38;5;241m+\u001b[39m\u001b[38;5;241m1\u001b[39m)]\n\u001b[1;32m 3\u001b[0m names \u001b[38;5;241m=\u001b[39m []\n", + "\u001b[0;31mValueError\u001b[0m: Already Saved the model Weights!" + ] + } + ], + "source": [ + "raise ValueError(\"Already Saved the model Weights!\")\n", + "names_tup = [(f\"LAYER_{i}_WEIGHTS\",f\"LAYER_{i}_BIAS\",) for i in range(1,3+1)]\n", + "names = []\n", + "for name_tup in names_tup:\n", + " names.extend(name_tup)\n", + "ENCODER_DICT = {}\n", + "for idx, name in enumerate(names):\n", + " trainable_variable = model.encoder.model.trainable_variables[idx].numpy()\n", + " ENCODER_DICT[name] = trainable_variable\n", + "\n", + "names_tup = [(f\"LAYER_{i}_WEIGHTS\",f\"LAYER_{i}_BIAS\",) for i in range(1,3+1)]\n", + "names = []\n", + "for name_tup in names_tup:\n", + " names.extend(name_tup)\n", + "DECODER_DICT = {}\n", + "for idx, name in enumerate(names):\n", + " trainable_variable = model.decoder.model.trainable_variables[idx].numpy()\n", + " DECODER_DICT[name] = trainable_variable\n", + "\n", + "names_tup = [(f\"LAYER_{i}_WEIGHTS\",f\"LAYER_{i}_BIAS\",) for i in range(1,3+1)]\n", + "names = []\n", + "for name_tup in names_tup:\n", + " names.extend(name_tup)\n", + "DISCRIMINATOR_DICT = {}\n", + "for idx, name in enumerate(names):\n", + " trainable_variable = model.discriminator.model.trainable_variables[idx].numpy()\n", + " DISCRIMINATOR_DICT[name] = trainable_variable\n", + "\n", + "AAE_DICT = {\n", + " \"ENCODER\": ENCODER_DICT,\n", + " \"DECODER\": DECODER_DICT,\n", + " \"DISCRIMINATOR\": DISCRIMINATOR_DICT,\n", + "}\n", + "\n", + "np.save(DIR_ROOT + \"models/current_model/portable/trainable_variables.npy\", AAE_DICT)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3332ec53", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "tfnb", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} -- cgit v1.2.1