from .dataset import Dataset class ShapeDataset(Dataset): """# Shape Dataset""" def __init__( self, dataset_filename, data_columns=[ "Area", "MjrAxisLength", "MnrAxisLength", "Eccentricity", "ConvexArea", "EquivDiameter", "Solidity", "Extent", "Perimeter", "ConvexPerim", "FibLen", "InscribeR", "BlebLen", ], label_columns=["Class"], batch_size=None, shuffle=False, val_split=0.0, scaler=None, sort_columns=None, random_seed=4332, pre_scale=10, **kwargs ): """# Initialize Dataset self.dataset = dataset (N, ...) self.labels = labels (N, ...) Optional Arguments: - prescale_function: The function that takes the ratio and transforms the dataset by multiplying the prescale_function output - sort_columns: The columns to sort the data by initially - equal_split: If the classifications should be equally split in training""" super().__init__( dataset_filename, data_columns=data_columns, label_columns=label_columns, batch_size=batch_size, shuffle=shuffle, val_split=val_split, scaler=scaler, sort_columns=sort_columns, random_seed=random_seed, pre_scale=pre_scale, **kwargs )