from .adversarial_distribution import * class XGaussianDistribution(AdversarialDistribution): """# X Gaussian Distribution""" def __init__(self, N): """# X Gaussian Distribution Initialization Initializes the name and dimensions""" super().__init__(N) assert self.dims == 2, "This Distribution only Supports 2-Dimensions" self.full_name = "2-Dimensional X-Gaussian Distribution" self.name = "XG" def __call__(self, *args): """# Magic method when calling the distribution This method is going to be called when you use xgauss(case_count)""" import numpy as np assert len(args) == 1, "Only 1 argument supported" N = args[0] sample_base = np.zeros((4 * N, 2)) sample_base[0 * N : (0 + 1) * N, :] = np.random.multivariate_normal( mean=[1, 1], cov=[[1, 0.7], [0.7, 1]], size=[N] ) sample_base[1 * N : (1 + 1) * N, :] = np.random.multivariate_normal( mean=[-1, -1], cov=[[1, 0.7], [0.7, 1]], size=[N] ) sample_base[2 * N : (2 + 1) * N, :] = np.random.multivariate_normal( mean=[-1, 1], cov=[[1, -0.7], [-0.7, 1]], size=[N] ) sample_base[3 * N : (3 + 1) * N, :] = np.random.multivariate_normal( mean=[1, -1], cov=[[1, -0.7], [-0.7, 1]], size=[N] ) np.random.shuffle(sample_base) return sample_base[:N, :]