aboutsummaryrefslogtreecommitdiff
path: root/kernel/cpu/irq.c
blob: 6e48ab1efffcaa2a4450bc35f7c70d46f7e63ca1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#include <cpu.h>
#include <cpu/irq.h>
#include <globals.h>
#include <graphics/lfb.h>
#include <symbols.h>
#include <sys/core.h>
#include <sys/schedule.h>
#include <tests/test.h>
#include <util/mutex.h>
#include <util/status.h>
#include <util/time.h>
#include <usr/main.h>

#define CPS 1000

static unsigned long counter = 0;
unsigned long c_irq_handler(void)
{
	unsigned long source = load32(CORE0_IRQ_SOURCE);
	// Check if GPU Interrupt
	if (source & (1 << 8)) {
		// Check if UART Interrupt
		if(load32(IRQ_PENDING2) & (1 << 25)) {
			// Check if UART Interrupt is Masked
			if(load32(UART0_MIS) & (1<<4)) {
				// Get the UART data
				unsigned long data = load32(UART0_DR);

				// Handle the recieved data
#ifdef DEBUG
				// Ctrl+G to output scheduler debug info
				if (data == 0x7) {
					uart_scheduler();
					uart_mutexes();
				}
#endif
				// Add task to handle the data
				if (irqs[UART_IRQ].handler != 0) {
					add_thread(irqs[UART_IRQ].handler, (void*)data, *(unsigned long*)irqs[UART_IRQ].handler_info);
					return 1;
				}
			}
		}
		// Check if System Time Compare 0 Triggered the Interrupt
		if (*(volatile unsigned long*)SYS_TIMER_CS & SYS_TIMER_SC_M0 && irqs[SYS_TIMER_0_IRQ].handler != 0) {
			volatile unsigned long* timer_cs = (volatile unsigned long*)SYS_TIMER_CS;
			volatile unsigned long* timer_chi = (volatile unsigned long*)SYS_TIMER_CHI;
			volatile unsigned long* nexttime = (volatile unsigned long*)SYS_TIMER_C0;
			add_thread(irqs[SYS_TIMER_0_IRQ].handler, 0, 1);
			*nexttime = *timer_chi + *(unsigned long*)irqs[SYS_TIMER_0_IRQ].handler_info;
			*timer_cs = SYS_TIMER_SC_M0;
			return 1;
		}
		// Check if System Time Compare 1 Triggered the Interrupt
		if (*(volatile unsigned long*)SYS_TIMER_CS & SYS_TIMER_SC_M1 && irqs[SYS_TIMER_1_IRQ].handler != 0) {
			volatile unsigned long* timer_cs = (volatile unsigned long*)SYS_TIMER_CS;
			volatile unsigned long* timer_chi = (volatile unsigned long*)SYS_TIMER_CHI;
			volatile unsigned long* nexttime = (volatile unsigned long*)SYS_TIMER_C1;
			add_thread(irqs[SYS_TIMER_1_IRQ].handler, 0, 1);
			*nexttime = *timer_chi + *(unsigned long*)irqs[SYS_TIMER_1_IRQ].handler_info;
			*timer_cs = SYS_TIMER_SC_M1;
			return 1;
		}
		// Check if System Time Compare 2 Triggered the Interrupt
		if (*(volatile unsigned long*)SYS_TIMER_CS & SYS_TIMER_SC_M2 && irqs[SYS_TIMER_2_IRQ].handler != 0) {
			volatile unsigned long* timer_cs = (volatile unsigned long*)SYS_TIMER_CS;
			volatile unsigned long* timer_chi = (volatile unsigned long*)SYS_TIMER_CHI;
			volatile unsigned long* nexttime = (volatile unsigned long*)SYS_TIMER_C2;
			add_thread(irqs[SYS_TIMER_2_IRQ].handler, 0, 1);
			*nexttime = *timer_chi + *(unsigned long*)irqs[SYS_TIMER_2_IRQ].handler_info;
			*timer_cs = SYS_TIMER_SC_M2;
			return 1;
		}
		// Check if System Time Compare 3 Triggered the Interrupt
		if (*(volatile unsigned long*)SYS_TIMER_CS & SYS_TIMER_SC_M3 && irqs[SYS_TIMER_3_IRQ].handler != 0) {
			volatile unsigned long* timer_cs = (volatile unsigned long*)SYS_TIMER_CS;
			volatile unsigned long* timer_chi = (volatile unsigned long*)SYS_TIMER_CHI;
			volatile unsigned long* nexttime = (volatile unsigned long*)SYS_TIMER_C3;
			add_thread(irqs[SYS_TIMER_3_IRQ].handler, 0, 1);
			*nexttime = *timer_chi + *(unsigned long*)irqs[SYS_TIMER_3_IRQ].handler_info;
			*timer_cs = SYS_TIMER_SC_M3;
			return 1;
		}
	}
	// Check if CNTV triggered the interrupt
	else if (source & (1 << 3)) {
		// Reset the counter
		write_cntv_tval(cntfrq);
		counter++;
		if (counter % 0x6000 == 0)
			counter = 0;
	}
	return 0;
}

unsigned long c_fiq_handler(void)
{
	unsigned long source = load32(CORE0_FIQ_SOURCE);
	// Check if CNTV triggered the interrupt
	if (source & (1 << 3) && irqs[LOCAL_TIMER_IRQ].handler != 0) {
		add_thread(irqs[LOCAL_TIMER_IRQ].handler, 0, 1);
		write_cntv_tval(cntfrq);
	}
	return 0;
}

void subscribe_irq(unsigned long irq_num, void* handler, void* handler_info)
{
	if (irq_num >= MAX_IRQS)
		return;
	irqs[irq_num].handler = handler;
	irqs[irq_num].handler_info = handler_info;
	switch (irq_num) {
		case UART_IRQ:
			store32(1<<4, UART0_IMSC);
			store32(1<<25, IRQ_ENABLE2);
			break;
		case SYS_TIMER_0_IRQ:
			store32(SYS_TIMER_SC_M0, IRQ_ENABLE1);
			*(volatile unsigned long*)SYS_TIMER_C0 = *(volatile unsigned long*)SYS_TIMER_CHI + *(unsigned long*)handler_info;
			break;
		case SYS_TIMER_1_IRQ:
			store32(SYS_TIMER_SC_M1, IRQ_ENABLE1);
			*(volatile unsigned long*)SYS_TIMER_C1 = *(volatile unsigned long*)SYS_TIMER_CHI + *(unsigned long*)handler_info;
			break;
		case SYS_TIMER_2_IRQ:
			store32(SYS_TIMER_SC_M2, IRQ_ENABLE1);
			*(volatile unsigned long*)SYS_TIMER_C2 = *(volatile unsigned long*)SYS_TIMER_CHI + *(unsigned long*)handler_info;
			break;
		case SYS_TIMER_3_IRQ:
			store32(SYS_TIMER_SC_M3, IRQ_ENABLE1);
			*(volatile unsigned long*)SYS_TIMER_C3 = *(volatile unsigned long*)SYS_TIMER_CHI + *(unsigned long*)handler_info;
			break;
	}
}