1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
|
#include <cpu.h>
#include <globals.h>
#include <graphics/lfb.h>
#include <drivers/uart.h>
#include <lib/kmem.h>
#include <sys/schedule.h>
#include <util/mutex.h>
extern void kernel_usr_task_loop(void);
void init_scheduler(void)
{
// Set rthread to usrloopthread - an infinitely running thread so that the pointer will never be null
usrloopthread.pc = (void*)kernel_usr_task_loop;
usrloopthread.sp = (void*)0x5FC8;
*(unsigned long**)usrloopthread.sp = (unsigned long*)kernel_usr_task_loop;
usrloopthread.sp_base = -1;
usrloopthread.mptr = 0;
usrloopthread.pid = -1;
usrloopthread.priority = -1;
usrloopthread.old_priority = -1;
usrloopthread.status = THREAD_READY;
usrloopthread.offset = -1;
scheduler.rthread = &usrloopthread;
// Initialize Scheduling Queues
for (unsigned long p = 0; p < PRIORITIES; p++) {
// Ready Init
scheduler.ready[p].start.value = 0;
scheduler.ready[p].start.next = &scheduler.ready[p].end;
scheduler.ready[p].start.entry_type = START_ENTRY;
scheduler.ready[p].end.value = 0;
scheduler.ready[p].end.next = &scheduler.ready[p].start;
scheduler.ready[p].end.entry_type = END_ENTRY;
// Mutex Wait Init
scheduler.mwait[p].start.value = 0;
scheduler.mwait[p].start.next = &scheduler.mwait[p].end;
scheduler.mwait[p].start.entry_type = START_ENTRY;
scheduler.mwait[p].end.value = 0;
scheduler.mwait[p].end.next = &scheduler.mwait[p].start;
scheduler.mwait[p].end.entry_type = END_ENTRY;
// Signal Wait Init
scheduler.swait[p].start.value = 0;
scheduler.swait[p].start.next = &scheduler.swait[p].end;
scheduler.swait[p].start.entry_type = START_ENTRY;
scheduler.swait[p].end.value = 0;
scheduler.swait[p].end.next = &scheduler.swait[p].start;
scheduler.swait[p].end.entry_type = END_ENTRY;
}
// Initialize nextpid
nextpid = FIRST_AVAIL_PID;
// Initialize Threads - Stack Base and Offsets
for (unsigned long i = 0; i < MAX_THREADS; i++) {
struct Thread* t = &threads[i];
t->offset = i;
t->sp_base = 0x20000000 - STACK_SIZE*i;
thread_entries[i].value = t;
thread_entries[i].next = &thread_entries[(i+1)];
thread_entries[i].entry_type = VALUE_ENTRY;
}
// Initialize the free queue
scheduler.free_threads.start.value = 0;
scheduler.free_threads.start.entry_type = START_ENTRY;
scheduler.free_threads.end.value = 0;
scheduler.free_threads.end.entry_type = END_ENTRY;
scheduler.free_threads.start.next = &thread_entries[0];
scheduler.free_threads.end.next = &thread_entries[MAX_THREADS-1];
thread_entries[MAX_THREADS-1].next = &scheduler.free_threads.end;
}
void push_thread_to_queue(struct Thread* t, unsigned char type, unsigned char priority)
{
struct Entry* entry = &thread_entries[t->offset];
struct Queue* queue;
if (type == THREAD_READY) {
queue = &scheduler.ready[priority];
} else if (type == THREAD_MWAIT) {
queue = &scheduler.mwait[priority];
} else if (type == THREAD_SWAIT) {
queue = &scheduler.swait[priority];
} else {
return;
}
push_to_queue(entry, queue);
//queue->end.next->next = entry;
//queue->end.next = entry;
//entry->next = &queue->end;
}
void prepend_thread_to_queue(struct Thread* t, unsigned char type, unsigned char priority)
{
struct Entry* entry = &thread_entries[t->offset];
struct Queue* queue;
if (type == THREAD_READY) {
queue = &scheduler.ready[priority];
} else if (type == THREAD_MWAIT) {
queue = &scheduler.mwait[priority];
} else if (type == THREAD_SWAIT) {
queue = &scheduler.swait[priority];
} else {
return;
}
prepend_to_queue(entry, queue);
}
struct Entry* pop_thread_from_queue(unsigned char type, unsigned char priority)
{
struct Entry* entry = 0;
struct Queue* queue;
if (type == THREAD_READY) {
queue = &scheduler.ready[priority];
} else if (type == THREAD_MWAIT) {
queue = &scheduler.mwait[priority];
} else if (type == THREAD_SWAIT) {
queue = &scheduler.swait[priority];
} else {
return entry;
}
return pop_from_queue(queue);
}
struct Entry* find_pid(unsigned long pid)
{
for (unsigned char p = 0; p < PRIORITIES; p++) {
struct Queue* queue;
struct Entry* prev;
struct Entry* entry;
queue = &scheduler.ready[p];
prev = &queue->start;
entry = prev->next;
while (entry->entry_type != END_ENTRY) {
if (((struct Thread*)entry->value)->pid == pid)
return prev;
prev = entry;
entry = entry->next;
}
queue = &scheduler.mwait[p];
prev = &queue->start;
entry = prev->next;
while (entry->entry_type != END_ENTRY) {
if (((struct Thread*)entry->value)->pid == pid)
return prev;
prev = entry;
entry = entry->next;
}
queue = &scheduler.swait[p];
prev = &queue->start;
entry = prev->next;
while (entry->entry_type != END_ENTRY) {
if (((struct Thread*)entry->value)->pid == pid)
return prev;
prev = entry;
entry = entry->next;
}
}
return 0;
}
struct Entry* find_mutex_wait_next(void* m)
{
for (unsigned char p = 0; p < PRIORITIES; p++) {
struct Queue* queue = &scheduler.mwait[p];
struct Entry* prev = &queue->start;
struct Entry* entry = prev->next;
while (entry->entry_type != END_ENTRY) {
if (((struct Thread*)entry->value)->mptr == m)
return prev;
prev = entry;
entry = entry->next;
}
}
return 0;
}
struct Entry* find_signal_wait_next(void* s)
{
for (unsigned char p = 0; p < PRIORITIES; p++) {
struct Queue* queue = &scheduler.swait[p];
struct Entry* prev = &queue->start;
struct Entry* entry = prev->next;
while (entry->entry_type != END_ENTRY) {
if (((struct Thread*)entry->value)->mptr == s)
return prev;
prev = entry;
entry = entry->next;
}
}
return 0;
}
struct Entry* get_unused_thread(void)
{
struct Queue* q = &scheduler.free_threads;
// If we have no available free threads
// return null pointer
if (q->start.next->entry_type == END_ENTRY)
return 0;
// Otherwise, get the next thread
return pop_from_queue(q);
}
unsigned char find_duplicate(void* pc)
{
for (unsigned char p = 0; p < PRIORITIES; p++) {
struct Queue* queue = &scheduler.ready[p];
struct Entry* entry = queue->start.next;
while (entry->entry_type == VALUE_ENTRY) {
if (((struct Thread*)entry->value)->pc == pc) {
return 1;
}
}
}
return 0;
}
unsigned char add_thread_without_duplicate(void* pc, void* arg, unsigned char priority)
{
if (!find_duplicate(pc)) {
return add_thread(pc, arg, priority);
}
return 1;
}
unsigned char svc_add_thread(void* pc, void* arg, unsigned char priority)
{
struct Entry* thread_entry = get_unused_thread();
// The only point-of-failure is not having a thread available
if (thread_entry == 0)
return 1;
struct Thread* thread = thread_entry->value;
/// Thread Setup
thread->pc = pc;
unsigned long* argp = (void*)thread->sp_base;
argp -= 13;
*argp = (unsigned long)arg; // Set r0 to the argument
argp -= 1;
*(unsigned long**)argp = (unsigned long*)cleanup; // Set lr to the cleanup function
thread->sp = argp;
thread->status = THREAD_READY;
thread->mptr = (void*)0;
thread->pid = nextpid++;
// Reset next pid on overflow
if (nextpid < FIRST_AVAIL_PID) {
nextpid = FIRST_AVAIL_PID;
}
// Cap Priority Level
if (priority >= PRIORITIES)
thread->priority = PRIORITIES - 1;
else
thread->priority = priority;
// This thread is new
thread->old_priority = -1;
// Reserved for non-preemptible tasking
thread->preempt = 0;
/// Add Thread to Scheduler
push_thread_to_queue(thread, THREAD_READY, thread->priority);
return 0;
}
void uart_scheduler(void)
{
uart_string("Scheduler Info\n==============\nCurrent\n");
uart_hex((unsigned long)scheduler.rthread);
uart_char(' ');
kmemshow32((void*)scheduler.rthread, 9);
unsigned long length;
for(int p = 0; p < PRIORITIES; p++) {
uart_string("Priority ");
uart_10(p);
uart_char('\n');
struct Queue* queue;
struct Entry* entry;
queue = &scheduler.ready[p];
uart_string("Ready Queue\n");
entry = queue->start.next;
length = 0;
while (entry->entry_type != END_ENTRY) {
uart_hex((unsigned long)entry->value);
uart_char(' ');
kmemshow32((void*)entry->value, 9);
entry = entry->next;
length++;
}
uart_hexn(length);
queue = &scheduler.mwait[p];
uart_string("Mutex Wait Queue\n");
entry = queue->start.next;
length = 0;
while (entry->entry_type != END_ENTRY) {
uart_hex((unsigned long)entry->value);
uart_char(' ');
kmemshow32((void*)entry->value, 9);
entry = entry->next;
length++;
}
uart_hexn(length);
queue = &scheduler.swait[p];
uart_string("Signal Wait Queue\n");
entry = queue->start.next;
length = 0;
while (entry->entry_type != END_ENTRY) {
uart_hex((unsigned long)entry->value);
uart_char(' ');
kmemshow32((void*)entry->value, 9);
entry = entry->next;
length++;
}
uart_hexn(length);
}
// Count number of free threads
struct Queue* queue = &scheduler.free_threads;
struct Entry* entry = queue->start.next;
while (entry->entry_type != END_ENTRY) {
entry = entry->next;
length++;
}
uart_hexn(length);
uart_string("==============\n");
}
struct Thread* next_thread(void)
{
// Recurse through all priorities to try to find a ready thread
for (int p = 0; p < PRIORITIES; p++) {
struct Queue* rq = &scheduler.ready[p];
if (rq->start.next->entry_type == END_ENTRY)
continue;
return rq->start.next->value;
}
// No thread found, use basic usrloopthread while waiting for new thread
return &usrloopthread;
}
void c_cleanup(void)
{
struct Thread* rt = scheduler.rthread;
struct Entry* e = pop_thread_from_queue(THREAD_READY, rt->priority);
// Add to free threads
push_to_queue(e, &scheduler.free_threads);
}
void yield(void)
{
struct Thread* rthread = scheduler.rthread;
// usrloopthread should not be yielded
if (rthread == &usrloopthread)
return;
// Put current thread at the end of its ready queue,
// thus any threads of the same priority can be run first
unsigned char priority = rthread->priority;
struct Entry* tq;
// Remove from top of queue
tq = pop_thread_from_queue(THREAD_READY, priority);
if (tq != 0) {
// Add to bottom of queue
push_thread_to_queue(tq->value, THREAD_READY, priority);
}
}
void sched_mutex_yield(void* m)
{
struct Thread* rthread = scheduler.rthread;
// usrloopthread should not be yielded
if (rthread == &usrloopthread)
return;
unsigned char priority = rthread->priority;
// Signify which lock this thread is waiting for
rthread->mptr = m;
struct Entry* rt;
// Remove from top of running queue
rt = pop_thread_from_queue(THREAD_READY, priority);
if (rt != 0)
// Push to bottom of wait queue
push_thread_to_queue(rt->value, THREAD_MWAIT, priority);
// Find the thread that has the mutex locked
struct Mutex* mtex = m;
struct Entry* mutex_next = find_pid(mtex->pid);
if (mutex_next == 0)
return;
// The next thread is the one with the lock
struct Entry* mutex_thread_entry = mutex_next->next;
// Check if it is lower priority
if (((struct Thread*)mutex_thread_entry->value)->priority > priority) {
// Remove it from the old priority queue
remove_next_from_queue(mutex_next);
struct Thread* t = mutex_thread_entry->value;
// Preserve the old priority
if (t->old_priority == 0xFF)
t->old_priority = t->priority;
t->priority = priority;
// Add it to the higher priority queue
push_thread_to_queue(t, THREAD_READY, priority);
}
}
void sched_semaphore_yield(void* s)
{
struct Thread* rthread = scheduler.rthread;
// usrloopthread should not be yielded
if (rthread == &usrloopthread)
return;
unsigned char priority = rthread->priority;
// Signify which lock this thread is waiting for
rthread->mptr = s;
struct Entry* rt;
// Remove from top of running queue
rt = pop_thread_from_queue(THREAD_READY, priority);
if (rt != 0)
// Push to bottom of wait queue
push_thread_to_queue(rt->value, THREAD_SWAIT, priority);
}
unsigned long sched_mutex_resurrect(void* m)
{
// Find any mutex to resurrect
struct Entry* prev = find_mutex_wait_next(m);
if (prev == 0)
return 0;
struct Entry* entry = prev->next;
struct Thread* thread = entry->value;
// Resurrect the thread
thread->mptr = 0;
// Remove from wait queue
entry = remove_next_from_queue(prev);
if (entry == 0)
return 1;
// Add to ready queue
push_thread_to_queue(entry->value, THREAD_READY, ((struct Thread*)entry->value)->priority);
// Demote current thread
struct Thread* rthread = scheduler.rthread;
unsigned long p = rthread->priority;
unsigned long op = rthread->old_priority;
// Restore the original priority level
if (op != 0xFF) {
struct Entry* tentry = pop_thread_from_queue(THREAD_READY, p);
((struct Thread*)tentry->value)->priority = op;
((struct Thread*)tentry->value)->old_priority = 0xFF;
prepend_thread_to_queue(tentry->value, THREAD_READY, op);
}
return 1;
}
unsigned long sched_semaphore_resurrect(void* s, unsigned long count)
{
unsigned long cnt = count;
while (cnt) {
// Find any signal/ semaphore to resurrect
struct Entry* prev = find_signal_wait_next(s);
if (prev == 0 && count == cnt)
return 0;
else if (prev == 0)
return 1;
struct Entry* entry = prev->next;
struct Thread* thread = entry->value;
// Resurrect the thread
thread->mptr = 0;
// Remove from wait queue
entry = remove_next_from_queue(prev);
if (entry == 0)
return 1;
// Add to ready queue
push_thread_to_queue(entry->value, THREAD_READY, ((struct Thread*)entry->value)->priority);
cnt--;
}
return 1;
}
|