1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
#include <cpu.h>
#include <globals.h>
#include <graphics/lfb.h>
#include <drivers/uart.h>
#include <lib/kmem.h>
#include <sys/schedule.h>
#include <util/mutex.h>
extern void kernel_usr_task_loop(void);
void init_scheduler(void)
{
// Set rthread to usrloopthread - an infinitely running thread so that the pointer will never be null
usrloopthread.pc = (void*)kernel_usr_task_loop;
usrloopthread.sp = (void*)0x5FC8;
*(unsigned long**)usrloopthread.sp = (unsigned long*)kernel_usr_task_loop;
usrloopthread.sp_base = -1;
usrloopthread.mptr = 0;
usrloopthread.pid = -1;
usrloopthread.priority = -1;
usrloopthread.status = THREAD_READY;
scheduler.rthread = &usrloopthread;
// Initialize Rotating Buffers
struct ThreadQueues* tq;
for (int i = 0; i < PRIORITIES; i++) {
tq = &scheduler.thread_queues[i];
struct ThreadRotBuffer* trb = &tq->ready;
for (int i = 0; i < TQUEUE_CNT; i++) {
trb->roffset = 0;
trb->woffset = 0;
for (int j = 0; j < TQUEUE_MAX; j++)
trb->queue[j] = 0;
trb += 1;
}
}
sched_stack_count = 0;
// Initialize nextpid
nextpid = FIRST_AVAIL_PID;
}
struct RStack get_stack(void)
{
struct RStack r = {.sp = 0, .idx = -1};
for (int i = 0; i < MAX_THREADS; i++) {
if (stacks_table[i] == 0) {
stacks_table[i] = 1;
r.idx = i;
r.sp = (void*)0x20000000 - STACK_SIZE*i;
return r;
}
}
return r;
}
void draw_stacks(void)
{
unsigned long ioff = 0;
unsigned long yoff = STACK_DRAW_YOFF;
for(int i = 0; i < MAX_THREADS; i++) {
if(stacks_table[i])
draw_cbox(ioff, yoff, STACK_DRAW_SIZE, STACK_DRAW_SIZE, 0xFFFFFF);
else
draw_cbox(ioff, yoff, STACK_DRAW_SIZE, STACK_DRAW_SIZE, 0x000000);
ioff += STACK_DRAW_SIZE;
if(ioff % STACK_DRAW_WIDTH == 0) {
yoff += STACK_DRAW_SIZE;
ioff = 0;
}
}
}
void add_thread(void* pc, void* arg, unsigned char priority)
{
//void* sp = get_stack();
struct RStack r = get_stack();
//struct Thread* thread = (struct Thread*)malloca(sizeof(struct Thread), 4);
struct Thread* thread = (struct Thread*)kmalloc(sizeof(struct Thread));
thread->pc = pc;
if (r.sp) {
thread->sp_base = r.idx;
unsigned long* argp = r.sp;
argp -= 13;
*argp = (unsigned long)arg; // Set r0 to the argument
argp -= 1;
*(unsigned long**)argp = (unsigned long*)cleanup; // Set lr to the cleanup function
thread->sp = (void*)argp;
thread->status = THREAD_READY;
sched_stack_count++;
} else {
thread->sp_base = r.idx;
thread->sp = r.sp;
thread->status = THREAD_SERROR;
}
thread->mptr = (void*)0;
thread->pid = nextpid++;
thread->priority = priority % PRIORITIES;
thread->preempt = 0;
// Add Thread* to scheduler's appropriate buffer
struct ThreadQueues* tq = &scheduler.thread_queues[thread->priority];
struct ThreadRotBuffer* trb;
if (thread->status == THREAD_SERROR) {
trb = &tq->serror;
} else {
trb = &tq->ready;
}
trb->queue[trb->woffset++] = thread;
trb->woffset %= TQUEUE_MAX;
}
void uart_scheduler(void)
{
uart_string("Scheduler Info\n==============\nCurrent\n");
uart_hex((unsigned long)scheduler.rthread);
uart_char(' ');
kmemshow32((void*)scheduler.rthread, 7);
struct ThreadQueues* tq;
for(int p = 0; p < PRIORITIES; p++) {
uart_string("Priority ");
uart_10(p);
uart_char('\n');
tq = &scheduler.thread_queues[p];
struct ThreadRotBuffer* trb;
trb = &tq->ready;
for(int i = 0; i < TQUEUE_CNT; i++) {
if (trb->roffset == trb->woffset) {
trb += 1;
continue;
}
uart_string("Queue ");
uart_10(i);
uart_char('\n');
unsigned long roffset = trb->roffset;
while (roffset != trb->woffset) {
uart_hex((unsigned long)trb->queue[roffset]);
uart_char(' ');
//kmemshow((void*)trb->queue[roffset], 4*6);
kmemshow32((void*)trb->queue[roffset], 7);
roffset++;
roffset %= TQUEUE_MAX;
}
trb += 1;
}
}
uart_string("==============\n");
}
struct Thread* next_thread(void)
{
struct Thread* next = &usrloopthread;
for (int p = 0; p < PRIORITIES; p++) {
struct ThreadRotBuffer* rb = &scheduler.thread_queues[p].ready;
if (rb->roffset == rb->woffset)
continue;
return rb->queue[rb->roffset];
}
return next;
}
void* get_rthread_roffset(void)
{
return &scheduler.thread_queues[scheduler.rthread->priority].ready.roffset;
}
void yield(void)
{
struct Thread* rthread = scheduler.rthread;
if (rthread == &usrloopthread)
return;
unsigned char priority = rthread->priority;
struct ThreadRotBuffer* trb = &scheduler.thread_queues[priority].ready;
trb->roffset += 1;
trb->roffset %= TQUEUE_MAX;
trb->queue[trb->woffset++] = rthread;
trb->woffset %= TQUEUE_MAX;
}
void sched_mutex_yield(void* m)
{
struct Thread* rthread = scheduler.rthread;
if (rthread == &usrloopthread)
return;
unsigned char priority = rthread->priority;
rthread->mptr = m;
struct ThreadRotBuffer* trb = &scheduler.thread_queues[priority].ready;
struct ThreadRotBuffer* trbm = &scheduler.thread_queues[priority].mwait;
trb->roffset += 1;
trb->roffset %= TQUEUE_MAX;
trbm->queue[trbm->woffset++] = rthread;
trbm->woffset %= TQUEUE_MAX;
}
void sched_mutex_resurrect(void* m)
{
for (int p = 0; p < PRIORITIES; p++) {
struct ThreadRotBuffer* trbm = &scheduler.thread_queues[p].mwait;
unsigned long roffset = trbm->roffset;
while (roffset != trbm->woffset) {
if (trbm->queue[roffset]->mptr == m) {
trbm->queue[roffset]->mptr = 0;
struct ThreadRotBuffer* trb = &scheduler.thread_queues[p].ready;
trb->queue[trb->woffset++] = trbm->queue[roffset];
trb->woffset %= TQUEUE_MAX;
// Copy all next backward to fill space
unsigned long coffset = roffset;
while (coffset != trbm->woffset) {
trbm->queue[coffset] = trbm->queue[(coffset+1)%TQUEUE_MAX];
coffset++;
coffset %= TQUEUE_MAX;
}
if(trbm->woffset == 0)
trbm->woffset = TQUEUE_MAX-1;
else
trbm->woffset--;
return;
}
roffset++;
roffset %= TQUEUE_MAX;
}
}
}
|