diff options
author | Christian C <cc@localhost> | 2024-11-11 12:29:32 -0800 |
---|---|---|
committer | Christian C <cc@localhost> | 2024-11-11 12:29:32 -0800 |
commit | b85ee9d64a536937912544c7bbd5b98b635b7e8d (patch) | |
tree | cef7bc17d7b29f40fc6b1867d0ce0a742d5583d0 /code/sunlab/common/distribution |
Initial commit
Diffstat (limited to 'code/sunlab/common/distribution')
9 files changed, 265 insertions, 0 deletions
diff --git a/code/sunlab/common/distribution/__init__.py b/code/sunlab/common/distribution/__init__.py new file mode 100644 index 0000000..a23cb0c --- /dev/null +++ b/code/sunlab/common/distribution/__init__.py @@ -0,0 +1,7 @@ +from .gaussian_distribution import * +from .x_gaussian_distribution import * +from .o_gaussian_distribution import * +from .s_gaussian_distribution import * +from .uniform_distribution import * +from .symmetric_uniform_distribution import * +from .swiss_roll_distribution import * diff --git a/code/sunlab/common/distribution/adversarial_distribution.py b/code/sunlab/common/distribution/adversarial_distribution.py new file mode 100644 index 0000000..675c00e --- /dev/null +++ b/code/sunlab/common/distribution/adversarial_distribution.py @@ -0,0 +1,35 @@ +class AdversarialDistribution: + """# Distribution Class to use in Adversarial Autoencoder + + For any distribution to be implemented, make sure to ensure each of the + methods are implemented""" + + def __init__(self, N): + """# Initialize the distribution for N-dimensions""" + self.dims = N + return + + def get_full_name(self): + """# Return a human-readable name of the distribution""" + return self.full_name + + def get_name(self): + """# Return a shortened name of the distribution + + Preferrably, the name should include characters that can be included in + a file name""" + return self.name + + def __str__(self): + """# Returns the short name""" + return self.get_name() + + def __repr__(self): + """# Returns the short name""" + return self.get_name() + + def __call__(self, *args): + """# Magic method when calling the distribution + + This method is going to be called when you use `dist(...)`""" + raise NotImplementedError("This distribution has not been implemented yet") diff --git a/code/sunlab/common/distribution/gaussian_distribution.py b/code/sunlab/common/distribution/gaussian_distribution.py new file mode 100644 index 0000000..e478ab6 --- /dev/null +++ b/code/sunlab/common/distribution/gaussian_distribution.py @@ -0,0 +1,23 @@ +from .adversarial_distribution import * + + +class GaussianDistribution(AdversarialDistribution): + """# Gaussian Distribution""" + + def __init__(self, N): + """# Gaussian Distribution Initialization + + Initializes the name and dimensions""" + super().__init__(N) + self.full_name = f"{N}-Dimensional Gaussian Distribution" + self.name = "G" + + def __call__(self, *args): + """# Magic method when calling the distribution + + This method is going to be called when you use gauss(N1,...,Nm)""" + import numpy as np + + return np.random.multivariate_normal( + mean=np.zeros(self.dims), cov=np.eye(self.dims), size=[*args] + ) diff --git a/code/sunlab/common/distribution/o_gaussian_distribution.py b/code/sunlab/common/distribution/o_gaussian_distribution.py new file mode 100644 index 0000000..1222ca1 --- /dev/null +++ b/code/sunlab/common/distribution/o_gaussian_distribution.py @@ -0,0 +1,38 @@ +from .adversarial_distribution import * + + +class OGaussianDistribution(AdversarialDistribution): + """# O Gaussian Distribution""" + + def __init__(self, N): + """# O Gaussian Distribution Initialization + + Initializes the name and dimensions""" + super().__init__(N) + assert self.dims == 2, "This Distribution only Supports 2-Dimensions" + self.full_name = "2-Dimensional O-Gaussian Distribution" + self.name = "OG" + + def __call__(self, *args): + """# Magic method when calling the distribution + + This method is going to be called when you use xgauss(case_count)""" + import numpy as np + + assert len(args) == 1, "Only 1 argument supported" + N = args[0] + sample_base = np.zeros((4 * N, 2)) + sample_base[0 * N : (0 + 1) * N, :] = np.random.multivariate_normal( + mean=[1, 1], cov=[[1, 0], [0, 1]], size=[N] + ) + sample_base[1 * N : (1 + 1) * N, :] = np.random.multivariate_normal( + mean=[-1, -1], cov=[[1, 0], [0, 1]], size=[N] + ) + sample_base[2 * N : (2 + 1) * N, :] = np.random.multivariate_normal( + mean=[-1, 1], cov=[[1, 0], [0, 1]], size=[N] + ) + sample_base[3 * N : (3 + 1) * N, :] = np.random.multivariate_normal( + mean=[1, -1], cov=[[1, 0], [0, 1]], size=[N] + ) + np.random.shuffle(sample_base) + return sample_base[:N, :] diff --git a/code/sunlab/common/distribution/s_gaussian_distribution.py b/code/sunlab/common/distribution/s_gaussian_distribution.py new file mode 100644 index 0000000..cace57f --- /dev/null +++ b/code/sunlab/common/distribution/s_gaussian_distribution.py @@ -0,0 +1,40 @@ +from .adversarial_distribution import * + + +class SGaussianDistribution(AdversarialDistribution): + """# S Gaussian Distribution""" + + def __init__(self, N, scale=0): + """# S Gaussian Distribution Initialization + + Initializes the name and dimensions""" + super().__init__(N) + assert self.dims == 2, "This Distribution only Supports 2-Dimensions" + self.full_name = "2-Dimensional S-Gaussian Distribution" + self.name = "SG" + self.scale = scale + + def __call__(self, *args): + """# Magic method when calling the distribution + + This method is going to be called when you use xgauss(case_count)""" + import numpy as np + + assert len(args) == 1, "Only 1 argument supported" + N = args[0] + sample_base = np.zeros((4 * N, 2)) + scale = self.scale + sample_base[0 * N : (0 + 1) * N, :] = np.random.multivariate_normal( + mean=[1, 1], cov=[[1, scale], [scale, 1]], size=[N] + ) + sample_base[1 * N : (1 + 1) * N, :] = np.random.multivariate_normal( + mean=[-1, -1], cov=[[1, scale], [scale, 1]], size=[N] + ) + sample_base[2 * N : (2 + 1) * N, :] = np.random.multivariate_normal( + mean=[-1, 1], cov=[[1, -scale], [-scale, 1]], size=[N] + ) + sample_base[3 * N : (3 + 1) * N, :] = np.random.multivariate_normal( + mean=[1, -1], cov=[[1, -scale], [-scale, 1]], size=[N] + ) + np.random.shuffle(sample_base) + return sample_base[:N, :] diff --git a/code/sunlab/common/distribution/swiss_roll_distribution.py b/code/sunlab/common/distribution/swiss_roll_distribution.py new file mode 100644 index 0000000..613bfc5 --- /dev/null +++ b/code/sunlab/common/distribution/swiss_roll_distribution.py @@ -0,0 +1,42 @@ +from .adversarial_distribution import * + + +class SwissRollDistribution(AdversarialDistribution): + """# Swiss Roll Distribution""" + + def __init__(self, N, scaling_factor=0.25, noise_level=0.15): + """# Swiss Roll Distribution Initialization + + Initializes the name and dimensions""" + super().__init__(N) + assert (self.dims == 2) or ( + self.dims == 3 + ), "This Distribution only Supports 2,3-Dimensions" + self.full_name = f"{self.dims}-Dimensional Swiss Roll Distribution Distribution" + self.name = f"SR{self.dims}" + self.noise_level = noise_level + self.scale = scaling_factor + + def __call__(self, *args): + """# Magic method when calling the distribution + + This method is going to be called when you use xgauss(case_count)""" + import numpy as np + + assert len(args) == 1, "Only 1 argument supported" + N = args[0] + noise = self.noise_level + scaling_factor = self.scale + + t = 3 * np.pi / 2 * (1 + 2 * np.random.rand(1, N)) + h = 21 * np.random.rand(1, N) + RANDOM = np.random.randn(3, N) * noise + data = ( + np.concatenate( + (scaling_factor * t * np.cos(t), h, scaling_factor * t * np.sin(t)) + ) + + RANDOM + ) + if self.dims == 2: + return data.T[:, [0, 2]] + return data.T[:, [0, 2, 1]] diff --git a/code/sunlab/common/distribution/symmetric_uniform_distribution.py b/code/sunlab/common/distribution/symmetric_uniform_distribution.py new file mode 100644 index 0000000..c3a4db0 --- /dev/null +++ b/code/sunlab/common/distribution/symmetric_uniform_distribution.py @@ -0,0 +1,21 @@ +from .adversarial_distribution import * + + +class SymmetricUniformDistribution(AdversarialDistribution): + """# Symmetric Uniform Distribution on [-1, 1)""" + + def __init__(self, N): + """# Symmetric Uniform Distribution Initialization + + Initializes the name and dimensions""" + super().__init__(N) + self.full_name = f"{N}-Dimensional Symmetric Uniform Distribution" + self.name = "SU" + + def __call__(self, *args): + """# Magic method when calling the distribution + + This method is going to be called when you use suniform(N1,...,Nm)""" + import numpy as np + + return np.random.rand(*args, self.dims) * 2.0 - 1.0 diff --git a/code/sunlab/common/distribution/uniform_distribution.py b/code/sunlab/common/distribution/uniform_distribution.py new file mode 100644 index 0000000..3e23e67 --- /dev/null +++ b/code/sunlab/common/distribution/uniform_distribution.py @@ -0,0 +1,21 @@ +from .adversarial_distribution import * + + +class UniformDistribution(AdversarialDistribution): + """# Uniform Distribution on [0, 1)""" + + def __init__(self, N): + """# Uniform Distribution Initialization + + Initializes the name and dimensions""" + super().__init__(N) + self.full_name = f"{N}-Dimensional Uniform Distribution" + self.name = "U" + + def __call__(self, *args): + """# Magic method when calling the distribution + + This method is going to be called when you use uniform(N1,...,Nm)""" + import numpy as np + + return np.random.rand(*args, self.dims) diff --git a/code/sunlab/common/distribution/x_gaussian_distribution.py b/code/sunlab/common/distribution/x_gaussian_distribution.py new file mode 100644 index 0000000..b4330aa --- /dev/null +++ b/code/sunlab/common/distribution/x_gaussian_distribution.py @@ -0,0 +1,38 @@ +from .adversarial_distribution import * + + +class XGaussianDistribution(AdversarialDistribution): + """# X Gaussian Distribution""" + + def __init__(self, N): + """# X Gaussian Distribution Initialization + + Initializes the name and dimensions""" + super().__init__(N) + assert self.dims == 2, "This Distribution only Supports 2-Dimensions" + self.full_name = "2-Dimensional X-Gaussian Distribution" + self.name = "XG" + + def __call__(self, *args): + """# Magic method when calling the distribution + + This method is going to be called when you use xgauss(case_count)""" + import numpy as np + + assert len(args) == 1, "Only 1 argument supported" + N = args[0] + sample_base = np.zeros((4 * N, 2)) + sample_base[0 * N : (0 + 1) * N, :] = np.random.multivariate_normal( + mean=[1, 1], cov=[[1, 0.7], [0.7, 1]], size=[N] + ) + sample_base[1 * N : (1 + 1) * N, :] = np.random.multivariate_normal( + mean=[-1, -1], cov=[[1, 0.7], [0.7, 1]], size=[N] + ) + sample_base[2 * N : (2 + 1) * N, :] = np.random.multivariate_normal( + mean=[-1, 1], cov=[[1, -0.7], [-0.7, 1]], size=[N] + ) + sample_base[3 * N : (3 + 1) * N, :] = np.random.multivariate_normal( + mean=[1, -1], cov=[[1, -0.7], [-0.7, 1]], size=[N] + ) + np.random.shuffle(sample_base) + return sample_base[:N, :] |