diff options
author | Christian C <cc@localhost> | 2024-11-11 12:29:32 -0800 |
---|---|---|
committer | Christian C <cc@localhost> | 2024-11-11 12:29:32 -0800 |
commit | b85ee9d64a536937912544c7bbd5b98b635b7e8d (patch) | |
tree | cef7bc17d7b29f40fc6b1867d0ce0a742d5583d0 /code/sunlab/common/scaler/quantile_scaler.py |
Initial commit
Diffstat (limited to 'code/sunlab/common/scaler/quantile_scaler.py')
-rw-r--r-- | code/sunlab/common/scaler/quantile_scaler.py | 52 |
1 files changed, 52 insertions, 0 deletions
diff --git a/code/sunlab/common/scaler/quantile_scaler.py b/code/sunlab/common/scaler/quantile_scaler.py new file mode 100644 index 0000000..a0f53fd --- /dev/null +++ b/code/sunlab/common/scaler/quantile_scaler.py @@ -0,0 +1,52 @@ +from .adversarial_scaler import AdversarialScaler + + +class QuantileScaler(AdversarialScaler): + """# QuantileScaler + + Scale the data based on the quantile distributions of each column""" + + def __init__(self, base_directory): + """# QuantileScaler initialization + + - Initialize the base directory of the model where it will live + - Initialize the scaler model""" + super().__init__(base_directory) + from sklearn.preprocessing import QuantileTransformer as QS + + self.scaler_base = QS() + self.scaler = None + + def init(self, data): + """# Scaler initialization + + Initialize the scaler transformation with the data""" + self.scaler = self.scaler_base.fit(data) + return self + + def load(self): + """# Scaler loading + + Load the data scaler model from a file""" + from pickle import load + + with open( + f"{self.base_directory}/portable/quantile_scaler.pkl", "rb" + ) as fhandle: + self.scaler = load(fhandle) + return self + + def save(self): + """# Scaler saving + + Save the data scaler model""" + from pickle import dump + + with open( + f"{self.base_directory}/portable/quantile_scaler.pkl", "wb" + ) as fhandle: + dump(self.scaler, fhandle) + + def __call__(self, *args, **kwargs): + """# Scale the given data""" + return self.scaler.transform(*args, **kwargs) |