aboutsummaryrefslogtreecommitdiff
path: root/code/sunlab/common/mathlib/random_walks.py
diff options
context:
space:
mode:
Diffstat (limited to 'code/sunlab/common/mathlib/random_walks.py')
-rw-r--r--code/sunlab/common/mathlib/random_walks.py83
1 files changed, 83 insertions, 0 deletions
diff --git a/code/sunlab/common/mathlib/random_walks.py b/code/sunlab/common/mathlib/random_walks.py
new file mode 100644
index 0000000..3aa3bcb
--- /dev/null
+++ b/code/sunlab/common/mathlib/random_walks.py
@@ -0,0 +1,83 @@
+def get_levy_flight(T=50, D=2, t0=0.1, alpha=3, periodic=False):
+ from numpy import vstack
+ from mistree import get_levy_flight as get_flight
+
+ if D == 2:
+ x, y = get_flight(T, mode="2D", periodic=periodic, t_0=t0, alpha=alpha)
+ xy = vstack([x, y]).T
+ elif D == 3:
+ x, y, z = get_flight(T, mode="3D", periodic=periodic, t_0=t0, alpha=alpha)
+ xy = vstack([x, y, z]).T
+ else:
+ raise ValueError(f"Dimension {D} not supported!")
+ return xy
+
+
+def get_levy_flights(N=10, T=50, D=2, t0=0.1, alpha=3, periodic=False):
+ from numpy import moveaxis, array
+
+ trajectories = []
+ for _ in range(N):
+ xy = get_levy_flight(T=T, D=D, t0=t0, alpha=alpha, periodic=periodic)
+ trajectories.append(xy)
+ return moveaxis(array(trajectories), 0, 1)
+
+
+def get_jitter_levy_flights(
+ N=10, T=50, D=2, t0=0.1, alpha=3, periodic=False, noise=5e-2
+):
+ from numpy.random import randn
+
+ trajectories = get_levy_flights(
+ N=N, T=T, D=D, t0=t0, alpha=alpha, periodic=periodic
+ )
+ return trajectories + randn(*trajectories.shape) * noise
+
+
+def get_gaussian_random_walk(T=50, D=2, R=5, step_size=0.5, soft=None):
+ from numpy import array, sin, cos, exp, zeros, pi
+ from numpy.random import randn, uniform, rand
+ from numpy.linalg import norm
+
+ def is_in(x, R=1):
+ from numpy.linalg import norm
+
+ return norm(x) < R
+
+ X = zeros((T, D))
+ for t in range(1, T):
+ while True:
+ if D == 2:
+ angle = uniform(0, pi * 2)
+ step = randn(1) * step_size
+ X[t, :] = X[t - 1, :] + array([cos(angle), sin(angle)]) * step
+ else:
+ X[t, :] = X[t - 1, :] + randn(D) / D * step_size
+ if soft is None:
+ if is_in(X[t, :], R):
+ break
+ elif rand() < exp(-(norm(X[t, :]) - R) * soft):
+ break
+ return X
+
+
+def get_gaussian_random_walks(N=10, T=50, D=2, R=5, step_size=0.5, soft=None):
+ from numpy import moveaxis, array
+
+ trajectories = []
+ for _ in range(N):
+ xy = get_gaussian_random_walk(T=T, D=D, R=R, step_size=step_size, soft=soft)
+ trajectories.append(xy)
+ return moveaxis(array(trajectories), 0, 1)
+
+
+def get_gaussian_sample(T=50, D=2):
+ from numpy.random import randn
+
+ return randn(T, D)
+
+
+def get_gaussian_samples(N=10, T=50, D=2, R=5, step_size=0.5):
+ from numpy.random import randn
+
+ return randn(T, N, D)