aboutsummaryrefslogtreecommitdiff
path: root/code/sunlab/transform_data.py
diff options
context:
space:
mode:
Diffstat (limited to 'code/sunlab/transform_data.py')
-rw-r--r--code/sunlab/transform_data.py799
1 files changed, 799 insertions, 0 deletions
diff --git a/code/sunlab/transform_data.py b/code/sunlab/transform_data.py
new file mode 100644
index 0000000..d6e3813
--- /dev/null
+++ b/code/sunlab/transform_data.py
@@ -0,0 +1,799 @@
+from sklearn import preprocessing
+import numpy as np
+
+# import features
+
+
+def import_train_set(train_file_name="AllResults.txt"):
+ featurelist = []
+
+ with open(train_file_name, "r") as infile:
+ for line in infile:
+ featurelist.append(line.strip())
+
+ # so now, featurelist[1] has names of things in form
+ # 'Area, MajorAxisLength, ... Class'
+ FeatureNames = [x.strip() for x in featurelist[0].split(",")]
+ # FeatureNames has form ['Area','MajorAxisLength',....'Class']
+ # which is what I wanted
+
+ AllData = [
+ [float(x.strip()) for x in featurelist[i].split(",")]
+ for i in range(1, len(featurelist))
+ ]
+
+ # Data is in form [[1,2,3,....0.0],[3,3,1,...0.0],...[5,3,1,...0.0]],
+ # the last input is the class.
+
+ classes = [int(i[-1]) for i in AllData]
+
+ # classes contains the class number from which the data is from
+
+ # want to delete target from AllData.
+
+ X = [i[0:-1] for i in AllData]
+
+ # X has form similar to Data. So when we reshape, we want the output to be
+ # X = array([[0,1,2,...]
+ # [1,2,3,...]])
+
+ Data = np.asarray(X, order="F")
+
+ # this has the right form, is uses fortran column-major style memory representation vs row major C-style
+ # the notation is scientific, where iris data set looks like a float. CHECKED: Both are type numpy.float64
+ # both have same indexing calls, so I think we're in business.
+
+ # looks exactly correct, or at least like iris data set target.
+ Target = np.asarray(classes)
+ return (Data, Target)
+
+
+########################################################################
+# for training purposes, the number of samples in data must be divisible by 256
+
+
+def Trim_Train_Data(Data, Target, max_length=None, balance=False):
+ ####
+ # Inputs: Data is numpy array with N samples (rows) and M measures (cols)
+ # Target is 1xN samples with ground truth
+ # max_length defines maximum length of training data. Should be divisible by 256, might want to code that...
+ # balance is boolean if you wish to have same number of samples in each class.
+ print("Class lengths are = ", [sum(Target == i) for i in set(Target)])
+ if not balance:
+ if (
+ np.shape(Data)[0] / 256 != np.round(np.shape(Data)[0] / 256)
+ or max_length < np.shape(Data)[0]
+ ):
+ print("Trimming data for training purposes...")
+ if not max_length:
+ max_length = 256 * (np.floor(np.shape(Data)[0] / 256))
+ else:
+ if max_length / 256 != np.round(max_length / 256):
+ # must make it divisible by 256
+ max_length = int(np.floor(max_length / 256) * 256)
+ print(
+ "Your given max_length was not divisible by 256. New max length is = %d"
+ % max_length
+ )
+ # determine percentages of each class.
+ cs = np.unique(Target)
+ ps = np.zeros(shape=(1, len(cs)))
+ ps = ps[0]
+ rows_to_take = np.array([])
+ for i in range(len(cs)):
+ ps[i] = np.sum(Target == cs[i]) / len(Target)
+ goodrows = np.where(Target == cs[i])[0]
+ rows_to_take = np.append(
+ rows_to_take, goodrows[0 : int(np.floor(ps[i] * max_length))]
+ )
+
+ ad_row = 0
+ class_ind = 0
+ while len(rows_to_take) != max_length:
+ # need to supplament.
+ goodrows = np.where(Target == cs[class_ind])[0]
+ rows_to_take = np.append(
+ rows_to_take,
+ goodrows[int(np.floor(ps[class_ind] * max_length)) + 1 + ad_row],
+ )
+ class_ind = class_ind + 1
+ if class_ind > len(cs):
+ class_ind = 0
+ ad_row = ad_row + 1
+ rows_to_take = rows_to_take.astype(int)
+ X_train_scaled = Data[rows_to_take, :]
+ Y_train = Target[rows_to_take]
+ print("Complete")
+ else:
+ X_train_scaled = Data
+ Y_train = Target
+ print("Final training length = %d" % X_train_scaled.shape[0])
+ print(
+ "Class lengths after trimming are = ",
+ [sum(Y_train == i) for i in set(Y_train)],
+ )
+ return (X_train_scaled, Y_train)
+ else:
+ # determine which has the minimum number of cases.
+ cs = np.unique(Target)
+ lens = np.zeros((len(cs)))
+ for i in range(len(cs)):
+ lens[i] = sum(Target == cs[i])
+
+ # randomly sample from each class now that number of samples.
+ min_len = int(min(lens))
+ rows_to_take = np.array([])
+ for i in range(len(cs)):
+ possiblerows = np.where(Target == cs[i])[0]
+ # now sample without replacement.
+ rows_to_take = np.append(
+ rows_to_take, np.random.choice(possiblerows, min_len, replace=False)
+ )
+ if len(rows_to_take) / 256 != np.round(
+ len(rows_to_take) / 256
+ ) or max_length < len(rows_to_take):
+ # trim until correct size.
+ if not max_length:
+ max_length = 256 * (np.floor(np.shape(Data)[0] / 256))
+ else:
+ if max_length / 256 != np.round(max_length / 256):
+ # must make it divisible by 256
+ max_length = int(np.floor(max_length / 256) * 256)
+ print(
+ "Your given max_length was not divisible by 256. New max length is = %d"
+ % max_length
+ )
+ # use min_len now to delete entries.
+ timearound = 0
+ pheno = len(cs) # start at the end
+ while len(rows_to_take) > max_length:
+ # entry to delete is
+ # first (min_len-round)*range(1,len(np.unique(Target))+1) -1
+ # print("%d entry delete" % (((min_len-timearound)*pheno) - 1))
+ rows_to_take = np.delete(
+ rows_to_take, ((min_len - timearound) * pheno) - 1
+ )
+ pheno = pheno - 1
+ if pheno < 1:
+ pheno = len(cs)
+ timearound = timearound + 1
+ rows_to_take = rows_to_take.astype(int)
+ X_train_scaled = Data[rows_to_take, :]
+ Y_train = Target[rows_to_take]
+ print("Final training length = %d" % X_train_scaled.shape[0])
+ print(
+ "Class lengths after trimming are = ",
+ [sum(Y_train == i) for i in set(Y_train)],
+ )
+ return (X_train_scaled, Y_train)
+
+
+#############################REMOVE OUTLIER DATA########################
+# How? Do this after scaling the data, then compute a z-score. We'll check the data after that.
+
+
+def Remove_Outliers(Data, Target):
+ # for each class, detect outliers.
+ # we'll begin by using z-scoring. This assumes data is described by a Guassian
+ # which is why it is vital to do this AFTER scaling the data.
+ # I plotted the data, it is absolutely not Gaussian.
+ # I tried DBSCAN machine learning algorithm but it is really not helpful.
+ # However, the data IS perhaps Gaussian after embedding. We can clean the signal AFTER by sending in
+ # the emebedded data in 1, 2, or 3 dimensions and removing points that are beyond a standard deviation.
+ # Data is TSNE embedded.
+ zscores = np.zeros(np.shape(Data))
+ for pheno in np.unique(Target):
+ # find rows where phenotype is correct.
+ prows = np.where(Target == pheno)[0]
+ for dim in range(np.shape(Data)[1]):
+ # calculate the mean.
+ m = np.mean(Data[prows, dim])
+ # calculate std.
+ s = np.std(Data[prows, dim])
+ for example in range(len(prows)):
+ zscores[prows[example], dim] = (Data[prows[example], dim] - m) / s
+
+ # now you calculated the zscores for each element. Apply a threshold
+ # good "thumb-rule" thresholds can be: 2.5, 3, 3.5, or more.
+ zthresh = 2.5
+
+ zscores = zscores > 2.5
+
+ badrows = [i for i in range(np.shape(zscores)[0]) if zscores[i].any()]
+
+ Data = np.delete(Data, badrows, axis=0)
+ Target = np.delete(Target, badrows, axis=0)
+
+ return (Data, Target)
+
+
+##############################POST AUGMENTATION#########################
+def Augment_Size(Data, Target, max_copies=0, s=0.2, balance=False, augment_class=None):
+ max_copies = int(max_copies)
+ # augment only the copies made by scaling the unit based measures.
+ # Measures should go: Area, MjrAxis, MnrAxis, Ecc,ConA,EqD,Sol,Ext,Per,conPer,fiber_length,InscribeR,bleb_len
+
+ # first, determine if we desire class balance.
+ if balance:
+ # determine which class has maximum number of samples.
+ cs = np.unique(Target)
+ vals = [sum(Target == cs[i]) for i in cs]
+ print(
+ "Class %d has max number of samples, increasing other classes via size augmentation"
+ % np.argmax(vals)
+ )
+ for i in range(len(cs)):
+ if i != np.argmax(vals):
+ # determine how many samples need to be made.
+ to_make = int(vals[np.argmax(vals)] - vals[i])
+ # randomly sample rows from Data with the correct phenotype cs[i]
+ possible_rows = np.where(Target == cs[i])[0]
+ # sample to_make numbers from possible_rows.
+ sampled_rows = np.random.choice(possible_rows, to_make, replace=True)
+ newrows = Data[sampled_rows, :]
+ size_vary = s * np.random.rand(1, to_make)[0]
+ # vary size.
+ for v in range(to_make):
+ if np.random.rand() < 0.5:
+ newrows[v, 0] = (
+ newrows[v, 0] + newrows[v, 0] * size_vary[v] * size_vary[v]
+ )
+ newrows[v, 1] = newrows[v, 1] + newrows[v, 1] * size_vary[v]
+ newrows[v, 2] = newrows[v, 2] + newrows[v, 2] * size_vary[v]
+ newrows[v, 4] = (
+ newrows[v, 4] + newrows[v, 4] * size_vary[v] * size_vary[v]
+ )
+ newrows[v, 5] = newrows[v, 5] + newrows[v, 5] * size_vary[v]
+ newrows[v, 7] = newrows[v, 7] + newrows[v, 7] * size_vary[v]
+ newrows[v, 8] = newrows[v, 8] + newrows[v, 8] * size_vary[v]
+ newrows[v, 9] = newrows[v, 9] + newrows[v, 9] * size_vary[v]
+ newrows[v, 10] = newrows[v, 10] + newrows[v, 10] * size_vary[v]
+ newrows[v, 11] = newrows[v, 11] + newrows[v, 11] * size_vary[v]
+ else:
+ newrows[v, 0] = (
+ newrows[v, 0] - newrows[v, 0] * size_vary[v] * size_vary[v]
+ )
+ newrows[v, 1] = newrows[v, 1] - newrows[v, 1] * size_vary[v]
+ newrows[v, 2] = newrows[v, 2] - newrows[v, 2] * size_vary[v]
+ newrows[v, 4] = (
+ newrows[v, 4] - newrows[v, 4] * size_vary[v] * size_vary[v]
+ )
+ newrows[v, 5] = newrows[v, 5] - newrows[v, 5] * size_vary[v]
+ newrows[v, 7] = newrows[v, 7] - newrows[v, 7] * size_vary[v]
+ newrows[v, 8] = newrows[v, 8] - newrows[v, 8] * size_vary[v]
+ newrows[v, 9] = newrows[v, 9] - newrows[v, 9] * size_vary[v]
+ newrows[v, 10] = newrows[v, 10] - newrows[v, 10] * size_vary[v]
+ newrows[v, 11] = newrows[v, 11] - newrows[v, 11] * size_vary[v]
+ Data = np.concatenate((Data, newrows), axis=0)
+ yadd = np.ones(to_make) * cs[i]
+ Target = np.concatenate((Target, yadd.astype(int)), axis=0)
+
+ Data = Data[np.argsort(Target), :]
+ Target = Target[np.argsort(Target)]
+
+ if augment_class is None:
+ if max_copies > 0:
+ print(
+ "Augmenting each class with additional %d samples via size augmentation"
+ % max_copies
+ )
+ cs = np.unique(Target)
+ for i in range(len(cs)):
+ # generate n = max_copies of Data.
+ possible_rows = np.where(Target == cs[i])[0]
+ # sample to_make numbers from possible_rows.
+ sampled_rows = np.random.choice(possible_rows, max_copies, replace=True)
+ newrows = Data[sampled_rows, :]
+ size_vary = s * np.random.rand(1, max_copies)[0]
+ # vary size.
+ for v in range(max_copies):
+ if np.random.rand() < 0.5:
+ newrows[v, 0] = (
+ newrows[v, 0] + newrows[v, 0] * size_vary[v] * size_vary[v]
+ )
+ newrows[v, 1] = newrows[v, 1] + newrows[v, 1] * size_vary[v]
+ newrows[v, 2] = newrows[v, 2] + newrows[v, 2] * size_vary[v]
+ newrows[v, 4] = (
+ newrows[v, 4] + newrows[v, 4] * size_vary[v] * size_vary[v]
+ )
+ newrows[v, 5] = newrows[v, 5] + newrows[v, 5] * size_vary[v]
+ newrows[v, 7] = newrows[v, 7] + newrows[v, 7] * size_vary[v]
+ newrows[v, 8] = newrows[v, 8] + newrows[v, 8] * size_vary[v]
+ newrows[v, 9] = newrows[v, 9] + newrows[v, 9] * size_vary[v]
+ newrows[v, 10] = newrows[v, 10] + newrows[v, 10] * size_vary[v]
+ newrows[v, 11] = newrows[v, 11] + newrows[v, 11] * size_vary[v]
+ else:
+ newrows[v, 0] = (
+ newrows[v, 0] - newrows[v, 0] * size_vary[v] * size_vary[v]
+ )
+ newrows[v, 1] = newrows[v, 1] - newrows[v, 1] * size_vary[v]
+ newrows[v, 2] = newrows[v, 2] - newrows[v, 2] * size_vary[v]
+ newrows[v, 4] = (
+ newrows[v, 4] - newrows[v, 4] * size_vary[v] * size_vary[v]
+ )
+ newrows[v, 5] = newrows[v, 5] - newrows[v, 5] * size_vary[v]
+ newrows[v, 7] = newrows[v, 7] - newrows[v, 7] * size_vary[v]
+ newrows[v, 8] = newrows[v, 8] - newrows[v, 8] * size_vary[v]
+ newrows[v, 9] = newrows[v, 9] - newrows[v, 9] * size_vary[v]
+ newrows[v, 10] = newrows[v, 10] - newrows[v, 10] * size_vary[v]
+ newrows[v, 11] = newrows[v, 11] - newrows[v, 11] * size_vary[v]
+ Data = np.concatenate((Data, newrows), axis=0)
+ yadd = np.ones(max_copies) * cs[i]
+ Target = np.concatenate((Target, yadd.astype(int)), axis=0)
+
+ Data = Data[np.argsort(Target), :]
+ Target = Target[np.argsort(Target)]
+
+ else:
+ augment_class = int(augment_class)
+ if max_copies > 0:
+ print(
+ "Augmenting Class = %d with additional %d samples via size augmentation"
+ % (augment_class, max_copies)
+ )
+ # generate n = max_copies of Data.
+ possible_rows = np.where(Target == augment_class)[0]
+ # sample to_make numbers from possible_rows.
+ sampled_rows = np.random.choice(possible_rows, max_copies, replace=True)
+ newrows = Data[sampled_rows, :]
+ size_vary = s * np.random.rand(1, max_copies)[0]
+ # vary size.
+ for v in range(max_copies):
+ if np.random.rand() < 0.5:
+ newrows[v, 0] = (
+ newrows[v, 0] + newrows[v, 0] * size_vary[v] * size_vary[v]
+ )
+ newrows[v, 1] = newrows[v, 1] + newrows[v, 1] * size_vary[v]
+ newrows[v, 2] = newrows[v, 2] + newrows[v, 2] * size_vary[v]
+ newrows[v, 4] = (
+ newrows[v, 4] + newrows[v, 4] * size_vary[v] * size_vary[v]
+ )
+ newrows[v, 5] = newrows[v, 5] + newrows[v, 5] * size_vary[v]
+ newrows[v, 7] = newrows[v, 7] + newrows[v, 7] * size_vary[v]
+ newrows[v, 8] = newrows[v, 8] + newrows[v, 8] * size_vary[v]
+ newrows[v, 9] = newrows[v, 9] + newrows[v, 9] * size_vary[v]
+ newrows[v, 10] = newrows[v, 10] + newrows[v, 10] * size_vary[v]
+ newrows[v, 11] = newrows[v, 11] + newrows[v, 11] * size_vary[v]
+ else:
+ newrows[v, 0] = (
+ newrows[v, 0] - newrows[v, 0] * size_vary[v] * size_vary[v]
+ )
+ newrows[v, 1] = newrows[v, 1] - newrows[v, 1] * size_vary[v]
+ newrows[v, 2] = newrows[v, 2] - newrows[v, 2] * size_vary[v]
+ newrows[v, 4] = (
+ newrows[v, 4] - newrows[v, 4] * size_vary[v] * size_vary[v]
+ )
+ newrows[v, 5] = newrows[v, 5] - newrows[v, 5] * size_vary[v]
+ newrows[v, 7] = newrows[v, 7] - newrows[v, 7] * size_vary[v]
+ newrows[v, 8] = newrows[v, 8] - newrows[v, 8] * size_vary[v]
+ newrows[v, 9] = newrows[v, 9] - newrows[v, 9] * size_vary[v]
+ newrows[v, 10] = newrows[v, 10] - newrows[v, 10] * size_vary[v]
+ newrows[v, 11] = newrows[v, 11] - newrows[v, 11] * size_vary[v]
+ Data = np.concatenate((Data, newrows), axis=0)
+ yadd = np.ones(max_copies) * augment_class
+ Target = np.concatenate((Target, yadd.astype(int)), axis=0)
+
+ Data = Data[np.argsort(Target), :]
+ Target = Target[np.argsort(Target)]
+
+ return (Data, Target)
+
+
+########################################################################
+########################################################################
+####### IMPORT THE DEV SET #####
+########################################################################
+########################################################################
+def import_dev_set(dev_file_name="DevResults.txt"):
+ print("Importing the dev set...")
+
+ # import features
+ featurelist = []
+
+ with open(dev_file_name, "r") as infile:
+ for line in infile:
+ featurelist.append(line.strip())
+
+ # so now, featurelist[1] has names of things in form 'Area, MajorAxisLength, ... Class'
+ FeatureNames = [x.strip() for x in featurelist[0].split(",")]
+ # FeatureNames has form ['Area','MajorAxisLength',....'Class'] which is what I wanted
+
+ DevData = [
+ [float(x.strip()) for x in featurelist[i].split(",")]
+ for i in range(1, len(featurelist))
+ ]
+
+ # Data is in form [[1,2,3,....0.0],[3,3,1,...0.0],...[5,3,1,...0.0]], the last input is the class.
+
+ Devclasses = [int(i[-1]) for i in DevData]
+
+ # classes contains the class number from which the data is from
+
+ # want to delete target from AllData.
+
+ DevX = [i[0:-1] for i in DevData]
+
+ # X has form similar to Data. So when we reshape, we want the output to be
+ # X = array([[0,1,2,...]
+ # [1,2,3,...]])
+
+ X_dev = np.asarray(DevX, order="F")
+
+ # add aspect ratio as last column of data
+ AR = []
+ for i in range(len(X_dev)):
+ AR.append(X_dev[i, 1] / X_dev[i, 2])
+
+ AR = np.asarray(AR)
+
+ AR = AR.reshape((len(AR), 1))
+
+ X_dev = np.append(X_dev, AR, 1) # concatenates arrays appropriately.
+
+ # add form factor as last column of data
+ # P^2/Area
+ FF = []
+ for i in range(len(X_dev)):
+ FF.append(X_dev[i, 8] * X_dev[i, 8] / X_dev[i, 0])
+ FF = np.asarray(FF)
+ FF = FF.reshape((len(FF), 1))
+ X_dev = np.append(X_dev, FF, 1)
+
+ # this has the right form, is uses fortran column-major style memory representation vs row major C-style
+ # the notation is scientific, where iris data set looks like a float. CHECKED: Both are type numpy.float64
+ # both have same indexing calls, so I think we're in business.
+
+ # looks exactly correct, or at least like iris data set target.
+ y_dev = np.asarray(Devclasses)
+
+ return (X_dev, y_dev, FeatureNames)
+
+
+########################################################################
+#########DATA IS IN THE SAME FORM AS IS FOUND IN IRIS DATASET###########
+########################################################################
+# Target = Target classes (0-4) for training and validation (type, numpy.int64, array)
+# Data = Data for training and validation to be split. (type, numpy.float64, array)
+# FeatureNames = Feature names for each column of data. (type, 'str', python list)
+########################################################################
+# print "Data is now in the same form as that found in Iris Dataset"
+# print "Splitting the training dataset into train/val"
+
+
+def apply_normalization(X_train, max_norm=False, l1_norm=False, l2_norm=False):
+ ########################################################
+ if max_norm:
+ print("Normalizing data using l1_norm")
+ X_train = X_train / np.max(np.abs(X_train), 0)[None, :]
+ if l1_norm:
+ print("Normalizing data using l1_norm")
+ X_train = X_train / np.sum(X_train, 0)[None, :]
+ if l2_norm:
+ print("Normalizing data using l1_norm")
+ X_train = X_train / np.sqrt(np.sum(X_train * X_train, 0))[None, :]
+
+ return X_train
+
+
+########################################################################
+
+
+def preprocess_train_data(X_train, d=2):
+
+ ############### SPLITTING THE DATASET ##################
+ # First split the dataset so it is as if we only had a training set then a eval set.
+ # X_train, X_test, y_train, y_test = train_test_split(Data, Target, test_size = .3)#.25)#, random_state =
+ # default has shuffle = True. test_size sets the proportion of the data set to include in the test, here 25%.
+ ########################################################
+ if d > 1:
+ print("Increasing dimensionality of dataset using cross terms")
+ #################INCREASING FEATURES####################
+ poly = preprocessing.PolynomialFeatures(degree=d, interaction_only=True)
+ # IN SOME MODELS with 2 polynomial features, we are getting 90% exactly. In some polynomial 3 models,
+ # we are getting 90.83%, which is exactly even with deep learning models.
+
+ X_train = poly.fit_transform(X_train)
+ # target_feature_names = ['x'.join(['{}^{}'.format(pair[0],pair[1]) for pair in tuple if pair[1]!=0]) for tuple in [zip(FeatureNames,p) for p in poly.powers_]]
+ # poly=preprocessing.PolynomialFeatures(degree = 2, interaction_only = True)
+ # X_test = poly.fit_transform(X_test)
+ # poly=preprocessing.PolynomialFeatures(degree = 2, interaction_only = True)
+ # X_dev = poly.fit_transform(X_dev)
+
+ ########################################################
+
+ print("Scaling the data")
+ ################# SCALE THE DATA #######################
+ # Scale the data. Each attribute in the dataset must be independently scaled, that is
+ # 0 mean, and unit variance. Doing this returns the z-scores of the data
+ # Z = (x - mu) / sigma
+
+ # , QuantileTransformer(output_distribution='normal')
+ scaler = preprocessing.RobustScaler().fit(X_train)
+ # preprocessing.StandardScaler().fit(X_train) #IMPORTANT NOTE: We are scaling based only on training data!!!!
+
+ X_train_scaled = scaler.fit_transform(X_train)
+
+ # X_test_scaled = scaler.transform(X_test) # will be used later to evaluate the performance.
+
+ # X_dev_scaled = scaler.transform(X_dev)
+
+ ##########################################################
+
+ return (X_train_scaled, scaler) # , target_feature_names)
+
+
+def preprocess_test_data(X_dev, scaler, d=2):
+ ############### SPLITTING THE DATASET ##################
+ # First split the dataset so it is as if we only had a training set then a eval set.
+ # X_train, X_test, y_train, y_test = train_test_split(Data, Target, test_size = .3)#.25)#, random_state =
+ # default has shuffle = True. test_size sets the proportion of the data set to include in the test, here 25%.
+ ########################################################
+
+ print("Increasing dimensionality of dataset using cross terms")
+ #################INCREASING FEATURES####################
+ poly = preprocessing.PolynomialFeatures(degree=d, interaction_only=True)
+ # IN SOME MODELS with 2 polynomial features, we are getting 90% exactly. In some polynomial 3 models,
+ # we are getting 90.83%, which is exactly even with deep learning models.
+
+ # X_train = poly.fit_transform(X_train)
+ # target_feature_names = ['x'.join(['{}^{}'.format(pair[0],pair[1]) for pair in tuple if pair[1]!=0]) for tuple in [zip(FeatureNames,p) for p in poly.powers_]]
+ # poly=preprocessing.PolynomialFeatures(degree = 2, interaction_only = True)
+ # X_test = poly.fit_transform(X_test)
+ # poly=preprocessing.PolynomialFeatures(degree = 2, interaction_only = True)
+ X_dev = poly.fit_transform(X_dev)
+
+ ########################################################
+
+ print("Scaling the data")
+ ################# SCALE THE DATA #######################
+ # Scale the data. Each attribute in the dataset must be independently scaled, that is
+ # 0 mean, and unit variance. Doing this returns the z-scores of the data
+ # Z = (x - mu) / sigma
+
+ # scaler = preprocessing.StandardScaler().fit(X_train) #IMPORTANT NOTE: We are scaling based only on training data!!!!
+
+ # X_train_scaled = scaler.transform(X_train)
+
+ # X_test_scaled = scaler.transform(X_test) # will be used later to evaluate the performance.
+
+ X_dev_scaled = scaler.transform(X_dev)
+
+ ##########################################################
+
+ return X_dev_scaled
+
+
+def Add_Measures(
+ Data,
+ FeatureNames=None,
+ add_AR=True,
+ add_FF=True,
+ add_convexity=True,
+ add_curl_old=True,
+ add_curl=True,
+ add_sphericity=True,
+ add_InscribedArea=True,
+ add_BlebRel=True,
+):
+ ############### EXPANDING THE DATASET ##################
+ # Add measures of Aspect Ratio, Form Factor, Convexity, Curl, and Sphericity
+ # Input: Data must be an np array with N (row) examples x M (cols) measures.
+ # Measures should go: Area, MjrAxis, MnrAxis, Ecc,ConA,EqD,Sol,Ext,Per,conPer,fiber_length,InscribeR,bleb_len
+ ########################################################
+ if add_AR:
+ AR = []
+ for i in range(len(Data)):
+ AR.append(Data[i, 1] / Data[i, 2])
+
+ AR = np.asarray(AR)
+
+ AR = AR.reshape((len(AR), 1))
+
+ Data = np.append(Data, AR, 1) # concatenates arrays appropriately.
+ if FeatureNames is not None:
+ FeatureNames.extend(["AR"])
+
+ if add_FF:
+ # this measure is really compactness, if you multiply each by 4 pi
+ # note this is different from roundness, which would use convex perimeter
+ FF = []
+ for i in range(len(Data)):
+ FF.append(Data[i, 0] / (Data[i, 8] * Data[i, 8]))
+ # FF.append(Data[i,8]*Data[i,8] / Data[i,0])
+
+ FF = np.asarray(FF)
+ FF = FF.reshape((len(FF), 1))
+ Data = np.append(Data, FF, 1)
+ if FeatureNames is not None:
+ FeatureNames.extend(["FF"])
+
+ if add_convexity:
+ CC = []
+ for i in range(len(Data)):
+ CC.append(Data[i, 8] / Data[i, 9])
+
+ CC = np.asarray(CC)
+ CC = CC.reshape((len(CC), 1))
+ Data = np.append(Data, CC, 1)
+ if FeatureNames is not None:
+ FeatureNames.extend(["Convexity"])
+
+ if add_curl_old:
+ # tells how curled the object is. might help for lamellipodia.
+ # curl is length / fiber length. (I assume length here can be major axis length)
+ # fiber length definition is (perimeter - sqrt(perimeter^2 - 16*Area)) / 4
+
+ # this definition does not work for a circle. Note that the result will be imaginary.
+ # I changed the 16 to a 4Pi. This should be fine.
+ cc = []
+ for i in range(len(Data)):
+ if (4 * np.pi * Data[i, 0]) <= (Data[i, 8] * Data[i, 8]):
+ fiber_length = (
+ Data[i, 8]
+ - np.sqrt((Data[i, 8] * Data[i, 8]) - (4 * np.pi * Data[i, 0]))
+ ) / np.pi # 4
+ cc.append(Data[i, 1] / fiber_length)
+ else:
+ fiber_length = Data[i, 8] / np.pi # 4
+ cc.append(Data[i, 1] / fiber_length)
+
+ cc = np.asarray(cc)
+ cc = cc.reshape((len(cc), 1))
+ Data = np.append(Data, cc, 1)
+ if FeatureNames is not None:
+ FeatureNames.extend(["Curl_old"])
+
+ if add_curl:
+ cc = []
+ for i in range(len(Data)):
+ cc.append(Data[i, 1] / Data[i, 10])
+
+ cc = np.asarray(cc)
+ cc = cc.reshape((len(cc), 1))
+ Data = np.append(Data, cc, 1)
+ # bound between 0 and 1 if major axis length could be replaced by feret diameter.
+ if FeatureNames is not None:
+ FeatureNames.extend(["Curl"])
+
+ if add_sphericity:
+ ss = []
+ for i in range(len(Data)):
+ ss.append(Data[i, 11] * 2 / Data[i, 1])
+
+ ss = np.asarray(ss)
+ ss = ss.reshape((len(ss), 1))
+ Data = np.append(Data, ss, 1)
+ # bound between 0 and 1 where 1 is a circle, perfectly spherical, and 0 is not at all.
+ # would be better if we had feret diameter instead of major axis.
+ if FeatureNames is not None:
+ FeatureNames.extend(["Sphericity"])
+
+ if add_InscribedArea:
+ aa = []
+ for i in range(len(Data)):
+ aa.append(Data[i, 1] * Data[i, 1] * np.pi / Data[i, 11])
+
+ aa = np.asarray(aa)
+ aa = aa.reshape((len(aa), 1))
+ Data = np.append(Data, aa, 1)
+ if FeatureNames is not None:
+ FeatureNames.extend(["InArea"])
+
+ if add_BlebRel:
+ bb = []
+ for i in range(len(Data)):
+ bb.append(Data[i, 12] / Data[i, 11])
+
+ bb = np.asarray(bb)
+ bb = bb.reshape((len(bb), 1))
+ Data = np.append(Data, bb, 1)
+ if FeatureNames is not None:
+ FeatureNames.extend(["Bleb_Rel"])
+
+ if FeatureNames is not None:
+ return (Data, FeatureNames)
+ else:
+ return Data
+
+
+def Exclude_Measures(
+ Data,
+ FeatureNames=None,
+ ex_Area=False,
+ ex_MjrAxis=False,
+ ex_MnrAxis=False,
+ ex_Ecc=False,
+ ex_ConA=False,
+ ex_EqD=False,
+ ex_Sol=False,
+ ex_Ext=False,
+ ex_Per=False,
+ ex_conPer=False,
+ ex_FL=False,
+ ex_InR=False,
+ ex_bleb=False,
+):
+ # Area,MjrAxis,MnrAxis,Ecc,ConA,EqD,Sol,Ext,Per,conPer,FL,InR
+
+ del_cols = []
+ if ex_Area:
+ del_cols.append(0)
+ if ex_MjrAxis:
+ del_cols.append(1)
+ if ex_MnrAxis:
+ del_cols.append(2)
+ if ex_Ecc:
+ del_cols.append(3)
+ if ex_ConA:
+ del_cols.append(4)
+ if ex_EqD:
+ del_cols.append(5)
+ if ex_Sol:
+ del_cols.append(6)
+ if ex_Ext:
+ del_cols.append(7)
+ if ex_Per:
+ del_cols.append(8)
+ if ex_conPer:
+ del_cols.append(9)
+ if ex_FL:
+ del_cols.append(10)
+ if ex_InR:
+ del_cols.append(11)
+ if ex_bleb:
+ del_cols.append(12)
+
+ Data = np.delete(Data, del_cols, 1)
+ if FeatureNames is not None:
+ FeatureNames = [i for j, i in enumerate(FeatureNames) if j not in del_cols]
+ return (Data, FeatureNames)
+ else:
+ return Data
+
+
+def open_and_save_test_data(fpath, csvfilename, txtfilename, ratio):
+ # fpath = '/volumes/chris stuff/chemsensing/chemsensing/Y27632_120518/Results/'
+ # /Rho_Act_120118/Results_after/'
+ # filename = 'FinalResults_after'
+ # option to delete certain measures if done so in training.
+ # order should go like
+ # %frame number%correctedNum%area%centroidx%centroidy%major%minor%eccentricity
+ # %orientation%convex area%filledarea%equivDiameter%solidity%extent%perimeter
+ # %perimeter old%convex perimeter%fiber length%%max in radii%bleb length%centersx%centersy
+
+ data = np.genfromtxt(
+ fpath + csvfilename + ".csv",
+ delimiter=",",
+ usecols=[2, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 19],
+ skip_header=1,
+ )
+ # was cols 3,6,7,8,10,12,13,14,15
+ frames_cell = np.genfromtxt(
+ fpath + csvfilename + ".csv", delimiter=",", usecols=[0, 1], skip_header=1
+ )
+ # add aspect ratio as last column of data
+
+ data[:, 0] = data[:, 0] * ratio * ratio # area
+ data[:, 1] = data[:, 1] * ratio # mjr
+ data[:, 2] = data[:, 2] * ratio # MnrAxis
+ # ecc unitless
+ data[:, 4] = data[:, 4] * ratio * ratio # ConvexArea
+ data[:, 5] = data[:, 5] * ratio # EquivDiameter
+ # Solidity
+ # Extent
+ data[:, 8] = data[:, 8] * ratio # Perimeter
+ data[:, 9] = data[:, 9] * ratio # conPerim
+ data[:, 10] = data[:, 10] * ratio # FibLen
+ data[:, 11] = data[:, 11] * ratio # max inscribed r
+ data[:, 12] = data[:, 12] * ratio # bleblen
+
+ preds = np.genfromtxt(
+ fpath + "/" + txtfilename + ".txt",
+ delimiter=" ",
+ usecols=[4, 5, 6, 7],
+ skip_header=1,
+ )
+ y_target = np.where(np.max(preds, 1) > 0.7, np.argmax(preds, 1), 4)
+ # y_target = np.reshape(y_target,(len(y_target),1))
+
+ return (data, y_target, frames_cell)