diff options
Diffstat (limited to 'old_notebooks/TensorflowToPyTorch.ipynb')
| -rw-r--r-- | old_notebooks/TensorflowToPyTorch.ipynb | 120 | 
1 files changed, 120 insertions, 0 deletions
| diff --git a/old_notebooks/TensorflowToPyTorch.ipynb b/old_notebooks/TensorflowToPyTorch.ipynb new file mode 100644 index 0000000..76d588c --- /dev/null +++ b/old_notebooks/TensorflowToPyTorch.ipynb @@ -0,0 +1,120 @@ +{ + "cells": [ +  { +   "cell_type": "code", +   "execution_count": 1, +   "id": "0dfb6ada-ed98-48c9-8610-cadb7493e138", +   "metadata": {}, +   "outputs": [], +   "source": [ +    "from sunlab.environment.base.cpu import *\n", +    "from sunlab.environment.base.extras import *\n", +    "from sunlab.globals import FILES\n", +    "from sunlab.sunflow import *" +   ] +  }, +  { +   "cell_type": "code", +   "execution_count": 2, +   "id": "4136a260-bb40-47ec-8aad-d2a6ac31f1f2", +   "metadata": {}, +   "outputs": [], +   "source": [ +    "model, dataset = load_aae_and_dataset(FILES['TRAINING_DATASET'], FILES['PRETRAINED_MODEL_DIR'], MaxAbsScaler)" +   ] +  }, +  { +   "cell_type": "markdown", +   "id": "00694ce2", +   "metadata": {}, +   "source": [ +    "# Save for PyTorch!" +   ] +  }, +  { +   "cell_type": "code", +   "execution_count": 22, +   "id": "23ae3a97", +   "metadata": {}, +   "outputs": [ +    { +     "ename": "ValueError", +     "evalue": "Already Saved the model Weights!", +     "output_type": "error", +     "traceback": [ +      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", +      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)", +      "Cell \u001b[0;32mIn[22], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAlready Saved the model Weights!\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m      2\u001b[0m names_tup \u001b[38;5;241m=\u001b[39m [(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLAYER_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mi\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m_WEIGHTS\u001b[39m\u001b[38;5;124m\"\u001b[39m,\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLAYER_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mi\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m_BIAS\u001b[39m\u001b[38;5;124m\"\u001b[39m,) \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m1\u001b[39m,\u001b[38;5;241m3\u001b[39m\u001b[38;5;241m+\u001b[39m\u001b[38;5;241m1\u001b[39m)]\n\u001b[1;32m      3\u001b[0m names \u001b[38;5;241m=\u001b[39m []\n", +      "\u001b[0;31mValueError\u001b[0m: Already Saved the model Weights!" +     ] +    } +   ], +   "source": [ +    "raise ValueError(\"Already Saved the model Weights!\")\n", +    "names_tup = [(f\"LAYER_{i}_WEIGHTS\",f\"LAYER_{i}_BIAS\",) for i in range(1,3+1)]\n", +    "names = []\n", +    "for name_tup in names_tup:\n", +    "    names.extend(name_tup)\n", +    "ENCODER_DICT = {}\n", +    "for idx, name in enumerate(names):\n", +    "    trainable_variable = model.encoder.model.trainable_variables[idx].numpy()\n", +    "    ENCODER_DICT[name] = trainable_variable\n", +    "\n", +    "names_tup = [(f\"LAYER_{i}_WEIGHTS\",f\"LAYER_{i}_BIAS\",) for i in range(1,3+1)]\n", +    "names = []\n", +    "for name_tup in names_tup:\n", +    "    names.extend(name_tup)\n", +    "DECODER_DICT = {}\n", +    "for idx, name in enumerate(names):\n", +    "    trainable_variable = model.decoder.model.trainable_variables[idx].numpy()\n", +    "    DECODER_DICT[name] = trainable_variable\n", +    "\n", +    "names_tup = [(f\"LAYER_{i}_WEIGHTS\",f\"LAYER_{i}_BIAS\",) for i in range(1,3+1)]\n", +    "names = []\n", +    "for name_tup in names_tup:\n", +    "    names.extend(name_tup)\n", +    "DISCRIMINATOR_DICT = {}\n", +    "for idx, name in enumerate(names):\n", +    "    trainable_variable = model.discriminator.model.trainable_variables[idx].numpy()\n", +    "    DISCRIMINATOR_DICT[name] = trainable_variable\n", +    "\n", +    "AAE_DICT = {\n", +    "    \"ENCODER\": ENCODER_DICT,\n", +    "    \"DECODER\": DECODER_DICT,\n", +    "    \"DISCRIMINATOR\": DISCRIMINATOR_DICT,\n", +    "}\n", +    "\n", +    "np.save(DIR_ROOT + \"models/current_model/portable/trainable_variables.npy\", AAE_DICT)" +   ] +  }, +  { +   "cell_type": "code", +   "execution_count": null, +   "id": "3332ec53", +   "metadata": {}, +   "outputs": [], +   "source": [] +  } + ], + "metadata": { +  "kernelspec": { +   "display_name": "tfnb", +   "language": "python", +   "name": "python3" +  }, +  "language_info": { +   "codemirror_mode": { +    "name": "ipython", +    "version": 3 +   }, +   "file_extension": ".py", +   "mimetype": "text/x-python", +   "name": "python", +   "nbconvert_exporter": "python", +   "pygments_lexer": "ipython3", +   "version": "3.9.12" +  } + }, + "nbformat": 4, + "nbformat_minor": 5 +} | 
