blob: a0f53fd391e8e57cecb5c15a68b4ab11f4c2bd04 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
from .adversarial_scaler import AdversarialScaler
class QuantileScaler(AdversarialScaler):
"""# QuantileScaler
Scale the data based on the quantile distributions of each column"""
def __init__(self, base_directory):
"""# QuantileScaler initialization
- Initialize the base directory of the model where it will live
- Initialize the scaler model"""
super().__init__(base_directory)
from sklearn.preprocessing import QuantileTransformer as QS
self.scaler_base = QS()
self.scaler = None
def init(self, data):
"""# Scaler initialization
Initialize the scaler transformation with the data"""
self.scaler = self.scaler_base.fit(data)
return self
def load(self):
"""# Scaler loading
Load the data scaler model from a file"""
from pickle import load
with open(
f"{self.base_directory}/portable/quantile_scaler.pkl", "rb"
) as fhandle:
self.scaler = load(fhandle)
return self
def save(self):
"""# Scaler saving
Save the data scaler model"""
from pickle import dump
with open(
f"{self.base_directory}/portable/quantile_scaler.pkl", "wb"
) as fhandle:
dump(self.scaler, fhandle)
def __call__(self, *args, **kwargs):
"""# Scale the given data"""
return self.scaler.transform(*args, **kwargs)
|