blob: 473d00d2db83f336e23fb20effbbb758c5220cc4 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
class Autoencoder:
"""# Autoencoder Model
Constructs an encoder-decoder model"""
def __init__(self, model_base_directory):
"""# Autoencoder Model Initialization
- model_base_directory: The base folder directory where the model will
be saved/ loaded"""
self.model_base_directory = model_base_directory
def init(self, encoder, decoder):
"""# Initialize an Autoencoder
- encoder: The encoder to use
- decoder: The decoder to use"""
from tensorflow import keras
self.load_parameters()
self.model = keras.models.Sequential()
self.model.add(encoder.model)
self.model.add(decoder.model)
self.model._name = "Autoencoder"
return self
def load(self):
"""# Load an existing Autoencoder"""
from os import listdir
if "autoencoder.keras" not in listdir(f"{self.model_base_directory}/portable/"):
return None
import tensorflow as tf
self.model = tf.keras.models.load_model(
f"{self.model_base_directory}/portable/autoencoder.keras", compile=False
)
self.model._name = "Autoencoder"
return self
def save(self, overwrite=False):
"""# Save the current Autoencoder
- Overwrite: overwrite any existing autoencoder that has been saved"""
from os import listdir
if overwrite:
self.model.save(f"{self.model_base_directory}/portable/autoencoder.keras")
return True
if "autoencoder.keras" in listdir(f"{self.model_base_directory}/portable/"):
return False
self.model.save(f"{self.model_base_directory}/portable/autoencoder.keras")
return True
def load_parameters(self):
"""# Load Autoencoder Model Parameters from File
The file needs to have the following parameters defined:
- data_size: int
- autoencoder_layer_size: int
- latent_size: int
- autoencoder_depth: int
- dropout: float (set to 0. if you don't want a dropout layer)
- use_leaky_relu: boolean"""
from pickle import load
with open(
f"{self.model_base_directory}/portable/model_parameters.pkl", "rb"
) as phandle:
parameters = load(phandle)
self.data_size = parameters["data_size"]
self.layer_size = parameters["autoencoder_layer_size"]
self.latent_size = parameters["latent_size"]
self.depth = parameters["autoencoder_depth"]
self.dropout = parameters["dropout"]
self.use_leaky_relu = parameters["use_leaky_relu"]
def summary(self):
"""# Returns the summary of the Autoencoder model"""
return self.model.summary()
def __call__(self, *args, **kwargs):
"""# Callable
When calling the autoencoder class, return the model's output"""
return self.model(*args, **kwargs)
|