1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from .encoder import Encoder
from .decoder import Decoder
from .discriminator import Discriminator
from .common import *
def dummy_distribution(*args):
raise NotImplementedError("Give a distribution")
class AdversarialAutoencoder:
"""# Adversarial Autoencoder Model"""
def __init__(
self,
data_dim,
latent_dim,
enc_dec_size,
disc_size,
negative_slope=0.3,
dropout=0.0,
distribution=dummy_distribution,
):
self.encoder = Encoder(
data_dim,
enc_dec_size,
latent_dim,
negative_slope=negative_slope,
dropout=dropout,
)
self.decoder = Decoder(
data_dim,
enc_dec_size,
latent_dim,
negative_slope=negative_slope,
dropout=dropout,
)
self.discriminator = Discriminator(
disc_size, latent_dim, negative_slope=negative_slope, dropout=dropout
)
self.data_dim = data_dim
self.latent_dim = latent_dim
self.p = dropout
self.negative_slope = negative_slope
self.distribution = distribution
return
def parameters(self):
return (
*self.encoder.parameters(),
*self.decoder.parameters(),
*self.discriminator.parameters(),
)
def train(self):
self.encoder.train(True)
self.decoder.train(True)
self.discriminator.train(True)
return self
def eval(self):
self.encoder.train(False)
self.decoder.train(False)
self.discriminator.train(False)
return self
def encode(self, data):
return self.encoder(data)
def decode(self, data):
return self.decoder(data)
def __call__(self, data):
return self.decode(self.encode(data))
def save(self, base="./"):
torch.save(self.encoder.state_dict(), base + "weights_encoder.pt")
torch.save(self.decoder.state_dict(), base + "weights_decoder.pt")
torch.save(self.discriminator.state_dict(), base + "weights_discriminator.pt")
return self
def load(self, base="./"):
self.encoder.load_state_dict(torch.load(base + "weights_encoder.pt"))
self.encoder.eval()
self.decoder.load_state_dict(torch.load(base + "weights_decoder.pt"))
self.decoder.eval()
self.discriminator.load_state_dict(
torch.load(base + "weights_discriminator.pt")
)
self.discriminator.eval()
return self
def to(self, device):
self.encoder.to(device)
self.decoder.to(device)
self.discriminator.to(device)
return self
def cuda(self):
if torch.cuda.is_available():
self.encoder = self.encoder.cuda()
self.decoder = self.decoder.cuda()
self.discriminator = self.discriminator.cuda()
return self
def cpu(self):
self.encoder = self.encoder.cpu()
self.decoder = self.decoder.cpu()
self.discriminator = self.discriminator.cpu()
return self
def init_optimizers(self, recon_lr=1e-4, adv_lr=5e-5):
self.optim_E_gen = torch.optim.Adam(self.encoder.parameters(), lr=adv_lr)
self.optim_E_enc = torch.optim.Adam(self.encoder.parameters(), lr=recon_lr)
self.optim_D_dec = torch.optim.Adam(self.decoder.parameters(), lr=recon_lr)
self.optim_D_dis = torch.optim.Adam(self.discriminator.parameters(), lr=adv_lr)
return self
def init_losses(self, recon_loss_fn=F.binary_cross_entropy):
self.recon_loss_fn = recon_loss_fn
return self
def train_step(self, raw_data, scale=1.0):
data = to_var(raw_data.view(raw_data.size(0), -1))
self.encoder.zero_grad()
self.decoder.zero_grad()
self.discriminator.zero_grad()
z = self.encoder(data)
X = self.decoder(z)
self.recon_loss = self.recon_loss_fn(X + EPS, data + EPS)
self.recon_loss.backward()
self.optim_E_enc.step()
self.optim_D_dec.step()
self.encoder.eval()
z_gaussian = to_var(self.distribution(data.size(0), self.latent_dim) * scale)
z_gaussian_fake = self.encoder(data)
y_gaussian = self.discriminator(z_gaussian)
y_gaussian_fake = self.discriminator(z_gaussian_fake)
self.D_loss = -torch.mean(
torch.log(y_gaussian + EPS) + torch.log(1 - y_gaussian_fake + EPS)
)
self.D_loss.backward()
self.optim_D_dis.step()
self.encoder.train()
z_gaussian = self.encoder(data)
y_gaussian = self.discriminator(z_gaussian)
self.G_loss = -torch.mean(torch.log(y_gaussian + EPS))
self.G_loss.backward()
self.optim_E_gen.step()
return
def losses(self):
try:
return self.recon_loss, self.D_loss, self.G_loss
except:
...
return
|