1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
|
from sklearn import preprocessing
import numpy as np
# import features
def import_train_set(train_file_name="AllResults.txt"):
featurelist = []
with open(train_file_name, "r") as infile:
for line in infile:
featurelist.append(line.strip())
# so now, featurelist[1] has names of things in form
# 'Area, MajorAxisLength, ... Class'
FeatureNames = [x.strip() for x in featurelist[0].split(",")]
# FeatureNames has form ['Area','MajorAxisLength',....'Class']
# which is what I wanted
AllData = [
[float(x.strip()) for x in featurelist[i].split(",")]
for i in range(1, len(featurelist))
]
# Data is in form [[1,2,3,....0.0],[3,3,1,...0.0],...[5,3,1,...0.0]],
# the last input is the class.
classes = [int(i[-1]) for i in AllData]
# classes contains the class number from which the data is from
# want to delete target from AllData.
X = [i[0:-1] for i in AllData]
# X has form similar to Data. So when we reshape, we want the output to be
# X = array([[0,1,2,...]
# [1,2,3,...]])
Data = np.asarray(X, order="F")
# this has the right form, is uses fortran column-major style memory representation vs row major C-style
# the notation is scientific, where iris data set looks like a float. CHECKED: Both are type numpy.float64
# both have same indexing calls, so I think we're in business.
# looks exactly correct, or at least like iris data set target.
Target = np.asarray(classes)
return (Data, Target)
########################################################################
# for training purposes, the number of samples in data must be divisible by 256
def Trim_Train_Data(Data, Target, max_length=None, balance=False):
####
# Inputs: Data is numpy array with N samples (rows) and M measures (cols)
# Target is 1xN samples with ground truth
# max_length defines maximum length of training data. Should be divisible by 256, might want to code that...
# balance is boolean if you wish to have same number of samples in each class.
print("Class lengths are = ", [sum(Target == i) for i in set(Target)])
if not balance:
if (
np.shape(Data)[0] / 256 != np.round(np.shape(Data)[0] / 256)
or max_length < np.shape(Data)[0]
):
print("Trimming data for training purposes...")
if not max_length:
max_length = 256 * (np.floor(np.shape(Data)[0] / 256))
else:
if max_length / 256 != np.round(max_length / 256):
# must make it divisible by 256
max_length = int(np.floor(max_length / 256) * 256)
print(
"Your given max_length was not divisible by 256. New max length is = %d"
% max_length
)
# determine percentages of each class.
cs = np.unique(Target)
ps = np.zeros(shape=(1, len(cs)))
ps = ps[0]
rows_to_take = np.array([])
for i in range(len(cs)):
ps[i] = np.sum(Target == cs[i]) / len(Target)
goodrows = np.where(Target == cs[i])[0]
rows_to_take = np.append(
rows_to_take, goodrows[0 : int(np.floor(ps[i] * max_length))]
)
ad_row = 0
class_ind = 0
while len(rows_to_take) != max_length:
# need to supplament.
goodrows = np.where(Target == cs[class_ind])[0]
rows_to_take = np.append(
rows_to_take,
goodrows[int(np.floor(ps[class_ind] * max_length)) + 1 + ad_row],
)
class_ind = class_ind + 1
if class_ind > len(cs):
class_ind = 0
ad_row = ad_row + 1
rows_to_take = rows_to_take.astype(int)
X_train_scaled = Data[rows_to_take, :]
Y_train = Target[rows_to_take]
print("Complete")
else:
X_train_scaled = Data
Y_train = Target
print("Final training length = %d" % X_train_scaled.shape[0])
print(
"Class lengths after trimming are = ",
[sum(Y_train == i) for i in set(Y_train)],
)
return (X_train_scaled, Y_train)
else:
# determine which has the minimum number of cases.
cs = np.unique(Target)
lens = np.zeros((len(cs)))
for i in range(len(cs)):
lens[i] = sum(Target == cs[i])
# randomly sample from each class now that number of samples.
min_len = int(min(lens))
rows_to_take = np.array([])
for i in range(len(cs)):
possiblerows = np.where(Target == cs[i])[0]
# now sample without replacement.
rows_to_take = np.append(
rows_to_take, np.random.choice(possiblerows, min_len, replace=False)
)
if len(rows_to_take) / 256 != np.round(
len(rows_to_take) / 256
) or max_length < len(rows_to_take):
# trim until correct size.
if not max_length:
max_length = 256 * (np.floor(np.shape(Data)[0] / 256))
else:
if max_length / 256 != np.round(max_length / 256):
# must make it divisible by 256
max_length = int(np.floor(max_length / 256) * 256)
print(
"Your given max_length was not divisible by 256. New max length is = %d"
% max_length
)
# use min_len now to delete entries.
timearound = 0
pheno = len(cs) # start at the end
while len(rows_to_take) > max_length:
# entry to delete is
# first (min_len-round)*range(1,len(np.unique(Target))+1) -1
# print("%d entry delete" % (((min_len-timearound)*pheno) - 1))
rows_to_take = np.delete(
rows_to_take, ((min_len - timearound) * pheno) - 1
)
pheno = pheno - 1
if pheno < 1:
pheno = len(cs)
timearound = timearound + 1
rows_to_take = rows_to_take.astype(int)
X_train_scaled = Data[rows_to_take, :]
Y_train = Target[rows_to_take]
print("Final training length = %d" % X_train_scaled.shape[0])
print(
"Class lengths after trimming are = ",
[sum(Y_train == i) for i in set(Y_train)],
)
return (X_train_scaled, Y_train)
#############################REMOVE OUTLIER DATA########################
# How? Do this after scaling the data, then compute a z-score. We'll check the data after that.
def Remove_Outliers(Data, Target):
# for each class, detect outliers.
# we'll begin by using z-scoring. This assumes data is described by a Guassian
# which is why it is vital to do this AFTER scaling the data.
# I plotted the data, it is absolutely not Gaussian.
# I tried DBSCAN machine learning algorithm but it is really not helpful.
# However, the data IS perhaps Gaussian after embedding. We can clean the signal AFTER by sending in
# the emebedded data in 1, 2, or 3 dimensions and removing points that are beyond a standard deviation.
# Data is TSNE embedded.
zscores = np.zeros(np.shape(Data))
for pheno in np.unique(Target):
# find rows where phenotype is correct.
prows = np.where(Target == pheno)[0]
for dim in range(np.shape(Data)[1]):
# calculate the mean.
m = np.mean(Data[prows, dim])
# calculate std.
s = np.std(Data[prows, dim])
for example in range(len(prows)):
zscores[prows[example], dim] = (Data[prows[example], dim] - m) / s
# now you calculated the zscores for each element. Apply a threshold
# good "thumb-rule" thresholds can be: 2.5, 3, 3.5, or more.
zthresh = 2.5
zscores = zscores > 2.5
badrows = [i for i in range(np.shape(zscores)[0]) if zscores[i].any()]
Data = np.delete(Data, badrows, axis=0)
Target = np.delete(Target, badrows, axis=0)
return (Data, Target)
##############################POST AUGMENTATION#########################
def Augment_Size(Data, Target, max_copies=0, s=0.2, balance=False, augment_class=None):
max_copies = int(max_copies)
# augment only the copies made by scaling the unit based measures.
# Measures should go: Area, MjrAxis, MnrAxis, Ecc,ConA,EqD,Sol,Ext,Per,conPer,fiber_length,InscribeR,bleb_len
# first, determine if we desire class balance.
if balance:
# determine which class has maximum number of samples.
cs = np.unique(Target)
vals = [sum(Target == cs[i]) for i in cs]
print(
"Class %d has max number of samples, increasing other classes via size augmentation"
% np.argmax(vals)
)
for i in range(len(cs)):
if i != np.argmax(vals):
# determine how many samples need to be made.
to_make = int(vals[np.argmax(vals)] - vals[i])
# randomly sample rows from Data with the correct phenotype cs[i]
possible_rows = np.where(Target == cs[i])[0]
# sample to_make numbers from possible_rows.
sampled_rows = np.random.choice(possible_rows, to_make, replace=True)
newrows = Data[sampled_rows, :]
size_vary = s * np.random.rand(1, to_make)[0]
# vary size.
for v in range(to_make):
if np.random.rand() < 0.5:
newrows[v, 0] = (
newrows[v, 0] + newrows[v, 0] * size_vary[v] * size_vary[v]
)
newrows[v, 1] = newrows[v, 1] + newrows[v, 1] * size_vary[v]
newrows[v, 2] = newrows[v, 2] + newrows[v, 2] * size_vary[v]
newrows[v, 4] = (
newrows[v, 4] + newrows[v, 4] * size_vary[v] * size_vary[v]
)
newrows[v, 5] = newrows[v, 5] + newrows[v, 5] * size_vary[v]
newrows[v, 7] = newrows[v, 7] + newrows[v, 7] * size_vary[v]
newrows[v, 8] = newrows[v, 8] + newrows[v, 8] * size_vary[v]
newrows[v, 9] = newrows[v, 9] + newrows[v, 9] * size_vary[v]
newrows[v, 10] = newrows[v, 10] + newrows[v, 10] * size_vary[v]
newrows[v, 11] = newrows[v, 11] + newrows[v, 11] * size_vary[v]
else:
newrows[v, 0] = (
newrows[v, 0] - newrows[v, 0] * size_vary[v] * size_vary[v]
)
newrows[v, 1] = newrows[v, 1] - newrows[v, 1] * size_vary[v]
newrows[v, 2] = newrows[v, 2] - newrows[v, 2] * size_vary[v]
newrows[v, 4] = (
newrows[v, 4] - newrows[v, 4] * size_vary[v] * size_vary[v]
)
newrows[v, 5] = newrows[v, 5] - newrows[v, 5] * size_vary[v]
newrows[v, 7] = newrows[v, 7] - newrows[v, 7] * size_vary[v]
newrows[v, 8] = newrows[v, 8] - newrows[v, 8] * size_vary[v]
newrows[v, 9] = newrows[v, 9] - newrows[v, 9] * size_vary[v]
newrows[v, 10] = newrows[v, 10] - newrows[v, 10] * size_vary[v]
newrows[v, 11] = newrows[v, 11] - newrows[v, 11] * size_vary[v]
Data = np.concatenate((Data, newrows), axis=0)
yadd = np.ones(to_make) * cs[i]
Target = np.concatenate((Target, yadd.astype(int)), axis=0)
Data = Data[np.argsort(Target), :]
Target = Target[np.argsort(Target)]
if augment_class is None:
if max_copies > 0:
print(
"Augmenting each class with additional %d samples via size augmentation"
% max_copies
)
cs = np.unique(Target)
for i in range(len(cs)):
# generate n = max_copies of Data.
possible_rows = np.where(Target == cs[i])[0]
# sample to_make numbers from possible_rows.
sampled_rows = np.random.choice(possible_rows, max_copies, replace=True)
newrows = Data[sampled_rows, :]
size_vary = s * np.random.rand(1, max_copies)[0]
# vary size.
for v in range(max_copies):
if np.random.rand() < 0.5:
newrows[v, 0] = (
newrows[v, 0] + newrows[v, 0] * size_vary[v] * size_vary[v]
)
newrows[v, 1] = newrows[v, 1] + newrows[v, 1] * size_vary[v]
newrows[v, 2] = newrows[v, 2] + newrows[v, 2] * size_vary[v]
newrows[v, 4] = (
newrows[v, 4] + newrows[v, 4] * size_vary[v] * size_vary[v]
)
newrows[v, 5] = newrows[v, 5] + newrows[v, 5] * size_vary[v]
newrows[v, 7] = newrows[v, 7] + newrows[v, 7] * size_vary[v]
newrows[v, 8] = newrows[v, 8] + newrows[v, 8] * size_vary[v]
newrows[v, 9] = newrows[v, 9] + newrows[v, 9] * size_vary[v]
newrows[v, 10] = newrows[v, 10] + newrows[v, 10] * size_vary[v]
newrows[v, 11] = newrows[v, 11] + newrows[v, 11] * size_vary[v]
else:
newrows[v, 0] = (
newrows[v, 0] - newrows[v, 0] * size_vary[v] * size_vary[v]
)
newrows[v, 1] = newrows[v, 1] - newrows[v, 1] * size_vary[v]
newrows[v, 2] = newrows[v, 2] - newrows[v, 2] * size_vary[v]
newrows[v, 4] = (
newrows[v, 4] - newrows[v, 4] * size_vary[v] * size_vary[v]
)
newrows[v, 5] = newrows[v, 5] - newrows[v, 5] * size_vary[v]
newrows[v, 7] = newrows[v, 7] - newrows[v, 7] * size_vary[v]
newrows[v, 8] = newrows[v, 8] - newrows[v, 8] * size_vary[v]
newrows[v, 9] = newrows[v, 9] - newrows[v, 9] * size_vary[v]
newrows[v, 10] = newrows[v, 10] - newrows[v, 10] * size_vary[v]
newrows[v, 11] = newrows[v, 11] - newrows[v, 11] * size_vary[v]
Data = np.concatenate((Data, newrows), axis=0)
yadd = np.ones(max_copies) * cs[i]
Target = np.concatenate((Target, yadd.astype(int)), axis=0)
Data = Data[np.argsort(Target), :]
Target = Target[np.argsort(Target)]
else:
augment_class = int(augment_class)
if max_copies > 0:
print(
"Augmenting Class = %d with additional %d samples via size augmentation"
% (augment_class, max_copies)
)
# generate n = max_copies of Data.
possible_rows = np.where(Target == augment_class)[0]
# sample to_make numbers from possible_rows.
sampled_rows = np.random.choice(possible_rows, max_copies, replace=True)
newrows = Data[sampled_rows, :]
size_vary = s * np.random.rand(1, max_copies)[0]
# vary size.
for v in range(max_copies):
if np.random.rand() < 0.5:
newrows[v, 0] = (
newrows[v, 0] + newrows[v, 0] * size_vary[v] * size_vary[v]
)
newrows[v, 1] = newrows[v, 1] + newrows[v, 1] * size_vary[v]
newrows[v, 2] = newrows[v, 2] + newrows[v, 2] * size_vary[v]
newrows[v, 4] = (
newrows[v, 4] + newrows[v, 4] * size_vary[v] * size_vary[v]
)
newrows[v, 5] = newrows[v, 5] + newrows[v, 5] * size_vary[v]
newrows[v, 7] = newrows[v, 7] + newrows[v, 7] * size_vary[v]
newrows[v, 8] = newrows[v, 8] + newrows[v, 8] * size_vary[v]
newrows[v, 9] = newrows[v, 9] + newrows[v, 9] * size_vary[v]
newrows[v, 10] = newrows[v, 10] + newrows[v, 10] * size_vary[v]
newrows[v, 11] = newrows[v, 11] + newrows[v, 11] * size_vary[v]
else:
newrows[v, 0] = (
newrows[v, 0] - newrows[v, 0] * size_vary[v] * size_vary[v]
)
newrows[v, 1] = newrows[v, 1] - newrows[v, 1] * size_vary[v]
newrows[v, 2] = newrows[v, 2] - newrows[v, 2] * size_vary[v]
newrows[v, 4] = (
newrows[v, 4] - newrows[v, 4] * size_vary[v] * size_vary[v]
)
newrows[v, 5] = newrows[v, 5] - newrows[v, 5] * size_vary[v]
newrows[v, 7] = newrows[v, 7] - newrows[v, 7] * size_vary[v]
newrows[v, 8] = newrows[v, 8] - newrows[v, 8] * size_vary[v]
newrows[v, 9] = newrows[v, 9] - newrows[v, 9] * size_vary[v]
newrows[v, 10] = newrows[v, 10] - newrows[v, 10] * size_vary[v]
newrows[v, 11] = newrows[v, 11] - newrows[v, 11] * size_vary[v]
Data = np.concatenate((Data, newrows), axis=0)
yadd = np.ones(max_copies) * augment_class
Target = np.concatenate((Target, yadd.astype(int)), axis=0)
Data = Data[np.argsort(Target), :]
Target = Target[np.argsort(Target)]
return (Data, Target)
########################################################################
########################################################################
####### IMPORT THE DEV SET #####
########################################################################
########################################################################
def import_dev_set(dev_file_name="DevResults.txt"):
print("Importing the dev set...")
# import features
featurelist = []
with open(dev_file_name, "r") as infile:
for line in infile:
featurelist.append(line.strip())
# so now, featurelist[1] has names of things in form 'Area, MajorAxisLength, ... Class'
FeatureNames = [x.strip() for x in featurelist[0].split(",")]
# FeatureNames has form ['Area','MajorAxisLength',....'Class'] which is what I wanted
DevData = [
[float(x.strip()) for x in featurelist[i].split(",")]
for i in range(1, len(featurelist))
]
# Data is in form [[1,2,3,....0.0],[3,3,1,...0.0],...[5,3,1,...0.0]], the last input is the class.
Devclasses = [int(i[-1]) for i in DevData]
# classes contains the class number from which the data is from
# want to delete target from AllData.
DevX = [i[0:-1] for i in DevData]
# X has form similar to Data. So when we reshape, we want the output to be
# X = array([[0,1,2,...]
# [1,2,3,...]])
X_dev = np.asarray(DevX, order="F")
# add aspect ratio as last column of data
AR = []
for i in range(len(X_dev)):
AR.append(X_dev[i, 1] / X_dev[i, 2])
AR = np.asarray(AR)
AR = AR.reshape((len(AR), 1))
X_dev = np.append(X_dev, AR, 1) # concatenates arrays appropriately.
# add form factor as last column of data
# P^2/Area
FF = []
for i in range(len(X_dev)):
FF.append(X_dev[i, 8] * X_dev[i, 8] / X_dev[i, 0])
FF = np.asarray(FF)
FF = FF.reshape((len(FF), 1))
X_dev = np.append(X_dev, FF, 1)
# this has the right form, is uses fortran column-major style memory representation vs row major C-style
# the notation is scientific, where iris data set looks like a float. CHECKED: Both are type numpy.float64
# both have same indexing calls, so I think we're in business.
# looks exactly correct, or at least like iris data set target.
y_dev = np.asarray(Devclasses)
return (X_dev, y_dev, FeatureNames)
########################################################################
#########DATA IS IN THE SAME FORM AS IS FOUND IN IRIS DATASET###########
########################################################################
# Target = Target classes (0-4) for training and validation (type, numpy.int64, array)
# Data = Data for training and validation to be split. (type, numpy.float64, array)
# FeatureNames = Feature names for each column of data. (type, 'str', python list)
########################################################################
# print "Data is now in the same form as that found in Iris Dataset"
# print "Splitting the training dataset into train/val"
def apply_normalization(X_train, max_norm=False, l1_norm=False, l2_norm=False):
########################################################
if max_norm:
print("Normalizing data using l1_norm")
X_train = X_train / np.max(np.abs(X_train), 0)[None, :]
if l1_norm:
print("Normalizing data using l1_norm")
X_train = X_train / np.sum(X_train, 0)[None, :]
if l2_norm:
print("Normalizing data using l1_norm")
X_train = X_train / np.sqrt(np.sum(X_train * X_train, 0))[None, :]
return X_train
########################################################################
def preprocess_train_data(X_train, d=2):
############### SPLITTING THE DATASET ##################
# First split the dataset so it is as if we only had a training set then a eval set.
# X_train, X_test, y_train, y_test = train_test_split(Data, Target, test_size = .3)#.25)#, random_state =
# default has shuffle = True. test_size sets the proportion of the data set to include in the test, here 25%.
########################################################
if d > 1:
print("Increasing dimensionality of dataset using cross terms")
#################INCREASING FEATURES####################
poly = preprocessing.PolynomialFeatures(degree=d, interaction_only=True)
# IN SOME MODELS with 2 polynomial features, we are getting 90% exactly. In some polynomial 3 models,
# we are getting 90.83%, which is exactly even with deep learning models.
X_train = poly.fit_transform(X_train)
# target_feature_names = ['x'.join(['{}^{}'.format(pair[0],pair[1]) for pair in tuple if pair[1]!=0]) for tuple in [zip(FeatureNames,p) for p in poly.powers_]]
# poly=preprocessing.PolynomialFeatures(degree = 2, interaction_only = True)
# X_test = poly.fit_transform(X_test)
# poly=preprocessing.PolynomialFeatures(degree = 2, interaction_only = True)
# X_dev = poly.fit_transform(X_dev)
########################################################
print("Scaling the data")
################# SCALE THE DATA #######################
# Scale the data. Each attribute in the dataset must be independently scaled, that is
# 0 mean, and unit variance. Doing this returns the z-scores of the data
# Z = (x - mu) / sigma
# , QuantileTransformer(output_distribution='normal')
scaler = preprocessing.RobustScaler().fit(X_train)
# preprocessing.StandardScaler().fit(X_train) #IMPORTANT NOTE: We are scaling based only on training data!!!!
X_train_scaled = scaler.fit_transform(X_train)
# X_test_scaled = scaler.transform(X_test) # will be used later to evaluate the performance.
# X_dev_scaled = scaler.transform(X_dev)
##########################################################
return (X_train_scaled, scaler) # , target_feature_names)
def preprocess_test_data(X_dev, scaler, d=2):
############### SPLITTING THE DATASET ##################
# First split the dataset so it is as if we only had a training set then a eval set.
# X_train, X_test, y_train, y_test = train_test_split(Data, Target, test_size = .3)#.25)#, random_state =
# default has shuffle = True. test_size sets the proportion of the data set to include in the test, here 25%.
########################################################
print("Increasing dimensionality of dataset using cross terms")
#################INCREASING FEATURES####################
poly = preprocessing.PolynomialFeatures(degree=d, interaction_only=True)
# IN SOME MODELS with 2 polynomial features, we are getting 90% exactly. In some polynomial 3 models,
# we are getting 90.83%, which is exactly even with deep learning models.
# X_train = poly.fit_transform(X_train)
# target_feature_names = ['x'.join(['{}^{}'.format(pair[0],pair[1]) for pair in tuple if pair[1]!=0]) for tuple in [zip(FeatureNames,p) for p in poly.powers_]]
# poly=preprocessing.PolynomialFeatures(degree = 2, interaction_only = True)
# X_test = poly.fit_transform(X_test)
# poly=preprocessing.PolynomialFeatures(degree = 2, interaction_only = True)
X_dev = poly.fit_transform(X_dev)
########################################################
print("Scaling the data")
################# SCALE THE DATA #######################
# Scale the data. Each attribute in the dataset must be independently scaled, that is
# 0 mean, and unit variance. Doing this returns the z-scores of the data
# Z = (x - mu) / sigma
# scaler = preprocessing.StandardScaler().fit(X_train) #IMPORTANT NOTE: We are scaling based only on training data!!!!
# X_train_scaled = scaler.transform(X_train)
# X_test_scaled = scaler.transform(X_test) # will be used later to evaluate the performance.
X_dev_scaled = scaler.transform(X_dev)
##########################################################
return X_dev_scaled
def Add_Measures(
Data,
FeatureNames=None,
add_AR=True,
add_FF=True,
add_convexity=True,
add_curl_old=True,
add_curl=True,
add_sphericity=True,
add_InscribedArea=True,
add_BlebRel=True,
):
############### EXPANDING THE DATASET ##################
# Add measures of Aspect Ratio, Form Factor, Convexity, Curl, and Sphericity
# Input: Data must be an np array with N (row) examples x M (cols) measures.
# Measures should go: Area, MjrAxis, MnrAxis, Ecc,ConA,EqD,Sol,Ext,Per,conPer,fiber_length,InscribeR,bleb_len
########################################################
if add_AR:
AR = []
for i in range(len(Data)):
AR.append(Data[i, 1] / Data[i, 2])
AR = np.asarray(AR)
AR = AR.reshape((len(AR), 1))
Data = np.append(Data, AR, 1) # concatenates arrays appropriately.
if FeatureNames is not None:
FeatureNames.extend(["AR"])
if add_FF:
# this measure is really compactness, if you multiply each by 4 pi
# note this is different from roundness, which would use convex perimeter
FF = []
for i in range(len(Data)):
FF.append(Data[i, 0] / (Data[i, 8] * Data[i, 8]))
# FF.append(Data[i,8]*Data[i,8] / Data[i,0])
FF = np.asarray(FF)
FF = FF.reshape((len(FF), 1))
Data = np.append(Data, FF, 1)
if FeatureNames is not None:
FeatureNames.extend(["FF"])
if add_convexity:
CC = []
for i in range(len(Data)):
CC.append(Data[i, 8] / Data[i, 9])
CC = np.asarray(CC)
CC = CC.reshape((len(CC), 1))
Data = np.append(Data, CC, 1)
if FeatureNames is not None:
FeatureNames.extend(["Convexity"])
if add_curl_old:
# tells how curled the object is. might help for lamellipodia.
# curl is length / fiber length. (I assume length here can be major axis length)
# fiber length definition is (perimeter - sqrt(perimeter^2 - 16*Area)) / 4
# this definition does not work for a circle. Note that the result will be imaginary.
# I changed the 16 to a 4Pi. This should be fine.
cc = []
for i in range(len(Data)):
if (4 * np.pi * Data[i, 0]) <= (Data[i, 8] * Data[i, 8]):
fiber_length = (
Data[i, 8]
- np.sqrt((Data[i, 8] * Data[i, 8]) - (4 * np.pi * Data[i, 0]))
) / np.pi # 4
cc.append(Data[i, 1] / fiber_length)
else:
fiber_length = Data[i, 8] / np.pi # 4
cc.append(Data[i, 1] / fiber_length)
cc = np.asarray(cc)
cc = cc.reshape((len(cc), 1))
Data = np.append(Data, cc, 1)
if FeatureNames is not None:
FeatureNames.extend(["Curl_old"])
if add_curl:
cc = []
for i in range(len(Data)):
cc.append(Data[i, 1] / Data[i, 10])
cc = np.asarray(cc)
cc = cc.reshape((len(cc), 1))
Data = np.append(Data, cc, 1)
# bound between 0 and 1 if major axis length could be replaced by feret diameter.
if FeatureNames is not None:
FeatureNames.extend(["Curl"])
if add_sphericity:
ss = []
for i in range(len(Data)):
ss.append(Data[i, 11] * 2 / Data[i, 1])
ss = np.asarray(ss)
ss = ss.reshape((len(ss), 1))
Data = np.append(Data, ss, 1)
# bound between 0 and 1 where 1 is a circle, perfectly spherical, and 0 is not at all.
# would be better if we had feret diameter instead of major axis.
if FeatureNames is not None:
FeatureNames.extend(["Sphericity"])
if add_InscribedArea:
aa = []
for i in range(len(Data)):
aa.append(Data[i, 1] * Data[i, 1] * np.pi / Data[i, 11])
aa = np.asarray(aa)
aa = aa.reshape((len(aa), 1))
Data = np.append(Data, aa, 1)
if FeatureNames is not None:
FeatureNames.extend(["InArea"])
if add_BlebRel:
bb = []
for i in range(len(Data)):
bb.append(Data[i, 12] / Data[i, 11])
bb = np.asarray(bb)
bb = bb.reshape((len(bb), 1))
Data = np.append(Data, bb, 1)
if FeatureNames is not None:
FeatureNames.extend(["Bleb_Rel"])
if FeatureNames is not None:
return (Data, FeatureNames)
else:
return Data
def Exclude_Measures(
Data,
FeatureNames=None,
ex_Area=False,
ex_MjrAxis=False,
ex_MnrAxis=False,
ex_Ecc=False,
ex_ConA=False,
ex_EqD=False,
ex_Sol=False,
ex_Ext=False,
ex_Per=False,
ex_conPer=False,
ex_FL=False,
ex_InR=False,
ex_bleb=False,
):
# Area,MjrAxis,MnrAxis,Ecc,ConA,EqD,Sol,Ext,Per,conPer,FL,InR
del_cols = []
if ex_Area:
del_cols.append(0)
if ex_MjrAxis:
del_cols.append(1)
if ex_MnrAxis:
del_cols.append(2)
if ex_Ecc:
del_cols.append(3)
if ex_ConA:
del_cols.append(4)
if ex_EqD:
del_cols.append(5)
if ex_Sol:
del_cols.append(6)
if ex_Ext:
del_cols.append(7)
if ex_Per:
del_cols.append(8)
if ex_conPer:
del_cols.append(9)
if ex_FL:
del_cols.append(10)
if ex_InR:
del_cols.append(11)
if ex_bleb:
del_cols.append(12)
Data = np.delete(Data, del_cols, 1)
if FeatureNames is not None:
FeatureNames = [i for j, i in enumerate(FeatureNames) if j not in del_cols]
return (Data, FeatureNames)
else:
return Data
def open_and_save_test_data(fpath, csvfilename, txtfilename, ratio):
# fpath = '/volumes/chris stuff/chemsensing/chemsensing/Y27632_120518/Results/'
# /Rho_Act_120118/Results_after/'
# filename = 'FinalResults_after'
# option to delete certain measures if done so in training.
# order should go like
# %frame number%correctedNum%area%centroidx%centroidy%major%minor%eccentricity
# %orientation%convex area%filledarea%equivDiameter%solidity%extent%perimeter
# %perimeter old%convex perimeter%fiber length%%max in radii%bleb length%centersx%centersy
data = np.genfromtxt(
fpath + csvfilename + ".csv",
delimiter=",",
usecols=[2, 5, 6, 7, 9, 11, 12, 13, 14, 16, 17, 18, 19],
skip_header=1,
)
# was cols 3,6,7,8,10,12,13,14,15
frames_cell = np.genfromtxt(
fpath + csvfilename + ".csv", delimiter=",", usecols=[0, 1], skip_header=1
)
# add aspect ratio as last column of data
data[:, 0] = data[:, 0] * ratio * ratio # area
data[:, 1] = data[:, 1] * ratio # mjr
data[:, 2] = data[:, 2] * ratio # MnrAxis
# ecc unitless
data[:, 4] = data[:, 4] * ratio * ratio # ConvexArea
data[:, 5] = data[:, 5] * ratio # EquivDiameter
# Solidity
# Extent
data[:, 8] = data[:, 8] * ratio # Perimeter
data[:, 9] = data[:, 9] * ratio # conPerim
data[:, 10] = data[:, 10] * ratio # FibLen
data[:, 11] = data[:, 11] * ratio # max inscribed r
data[:, 12] = data[:, 12] * ratio # bleblen
preds = np.genfromtxt(
fpath + "/" + txtfilename + ".txt",
delimiter=" ",
usecols=[4, 5, 6, 7],
skip_header=1,
)
y_target = np.where(np.max(preds, 1) > 0.7, np.argmax(preds, 1), 4)
# y_target = np.reshape(y_target,(len(y_target),1))
return (data, y_target, frames_cell)
|