1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
|
use crate::node::Node;
use crate::node::{insert,delete,search, min_pair, max_pair};
use crate::iterators::RangePairIter;
use std::collections::Bound;
pub struct AVLTree<K:Ord+Copy,D> {
pub root: Option<Box<Node<K,D>>>
}
impl <K:Ord+Copy,D> AVLTree<K,D>{
/// This function will construct a new empty AVLTree.
/// # Examples
/// ```
/// extern crate avl_tree;
/// let mut t=avl_tree::AVLTree::<u64,i32>::new();
/// ```
pub fn new() -> AVLTree<K,D>{
AVLTree{root: None}
}
/// This function will insert the key,value pair into the tree, overwriting the old data if the key is allready
/// part of the tree.
/// # Examples
/// ```
/// let mut t=avl_tree::AVLTree::<u64,i32>::new();
/// t.insert(2,25);
/// assert_eq!(t.get(2), Some(&25));
/// t.insert(2,30);
/// assert_eq!(t.get(2), Some(&30));
/// ```
pub fn insert(&mut self, key: K, data: D) {
match self.root.take() {
Some(box_to_node) => self.root = Some(insert::<K,D>(key, data, box_to_node)),
None => self.root = Some(Box::new(Node::new(key,data))),
}
}
/// This function will remove the key,value pair from the tree, doing nothing if the key is not
/// part of the tree.
/// # Examples
/// ```
/// let mut t=avl_tree::AVLTree::<u64,i32>::new();
/// t.insert(2,25);
/// t.delete(2);
/// assert!(t.empty());
/// t.delete(3);
/// assert!(t.empty());
/// ```
pub fn delete(&mut self, key: K){
match self.root.take() {
Some(box_to_node) => self.root = delete(key,box_to_node),
None => return
}
}
/// This function will return the Some(data) stored under the given key or None if the key is not
/// known.
/// # Examples
/// ```
/// let mut t=avl_tree::AVLTree::<u64,i32>::new();
/// t.insert(2,25);
/// assert_eq!(t.get(2), Some(&25));
/// assert_eq!(t.get(3), None);
///
/// ```
pub fn get(&self, key: K) -> Option<&D>{
match self.root {
Some(ref box_to_node) =>search(&key, box_to_node),
None => None
}
}
/// This function will return the data stored under the given key or the default if the key is not
/// known.
/// # Examples
/// ```
/// let mut t=avl_tree::AVLTree::<u64,i32>::new();
/// t.insert(2,25);
/// assert_eq!(t.get_or(2,&2000), &25);
/// assert_eq!(t.get_or(3,&2000), &2000);
///
/// ```
pub fn get_or<'a>(&'a self, key: K, default: &'a D) -> &'a D{
self.get(key).map_or(default, |data| data)
}
/// This function will return true if the tree contains the given key, false otherwise
/// # Examples
/// ```
/// let mut t=avl_tree::AVLTree::<u64,i32>::new();
/// t.insert(2,25);
/// assert!(!t.contains(3));
/// assert!(t.contains(2));
///
/// ```
pub fn contains(&self, key: K) -> bool {
self.get(key).is_some()
}
/// This function will return true if the tree is empty, false otherwise.
/// # Examples
/// ```
/// let mut t=avl_tree::AVLTree::<u64,i32>::new();
/// assert!(t.empty());
/// t.insert(2,25);
/// assert!(!t.empty());
///
/// ```
pub fn empty(&self) -> bool { self.root.is_none() }
/// This function will return the key/value pair with the smallest key in the tree, or None if the
/// tree is empty.
/// # Examples
/// ```
/// let mut t=avl_tree::AVLTree::<u64,i32>::new();
/// t.insert(2,25);
/// t.insert(3,50);
/// assert_eq!(t.min().unwrap().0, &2);
/// assert_eq!(t.min().unwrap().1, &25);
///
/// ```
pub fn min<'a>(&'a self) -> Option<(&'a K,&'a D)> {
match self.root {
Some(ref root) => Some(min_pair(root)),
None => None
}
}
/// This function will return the key/value pair with the biggest key in the tree, or None if the
/// tree is empty.
/// # Examples
/// ```
/// let mut t=avl_tree::AVLTree::<u64,i32>::new();
/// t.insert(2,25);
/// t.insert(3,50);
/// assert_eq!(t.max().unwrap().0, &3);
/// assert_eq!(t.max().unwrap().1, &50);
///
/// ```
pub fn max<'a>(&'a self) -> Option<(&'a K,&'a D)> {
match self.root {
Some(ref root) => Some(max_pair(root)),
None => None
}
}
/// This function will return a read only iterator for all (key,value) pairs in the tree.
/// # Examples
/// ```
/// # let mut t=avl_tree::AVLTree::<u64,i32>::new();
/// for (key,val) in t.iter() {
/// println!("{} -> {}",key,val)
/// }
///
/// ```
pub fn iter(&self) -> RangePairIter<K,D>{
RangePairIter::new(self, Bound::Unbounded, Bound::Unbounded)
}
/// This function will return a read only iterator for all (key,value) pairs between the two bounds (which can
/// be inclusive, exclusive or unbounded).
/// # Examples
/// ```
///
///
/// use std::collections::Bound;
/// //[...]
/// let mut t=avl_tree::AVLTree::<u64,i32>::new();
/// for (key,val) in t.range(Bound::Excluded(32), Bound::Excluded(38)) {
/// println!("{} -> {}",key,val)
/// }
///
/// ```
pub fn range(&self, min: Bound<K>, max: Bound<K>) -> RangePairIter<K,D>{
RangePairIter::new(self, min, max)
}
}
|